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Abstract. In functional analysis, approximative properties of an ob-
ject become precise in its ultrapower. We discuss this idea and its conse-
quences for automorphisms of II1 factors. Here are some sample results:
(1) an automorphism is approximately inner if and only if its ultrapower
is ℵ0-locally inner; (2) the ultrapower of an outer automorphism is al-
ways outer; (3) for unital *-homomorphisms from a separable nuclear
C*-algebra into an ultrapower of a II1 factor, equality of the induced
traces implies unitary equivalence. All statements are proved using op-
erator algebraic techniques, but in the last section of the paper we in-
dicate how the underlying principle is related to theorems of Henson’s
positive bounded logic.

1. Introduction

We start with some comments on the historical record.

The general ultrapower/ultraproduct construction originates in model

theory, with  Loś’s theorem in 1955 ([L]) and a wave of logical applications

in the 1960s. Ultrapowers appropriate for functional analysis appeared for-

mally around 1970 in two main flavors: a normed version for structures such

as Banach spaces, and a tracial version for finite von Neumann algebras. It

is well-known that the mathematics underlying the tracial ultrapower con-

struction was written down much earlier in Sakai’s 1962 notes ([Sa1, Section

II.7]), although Sakai does not use ultrapower terminology. But it seems to

be less appreciated that Sakai’s write-up was motivated by a 1954 article of

Wright ([W]). A student of Kaplansky, Wright worked with AW*-algebras

and lattices, which may explain his paper’s diminished legacy. (Currently

its most recent citation on MathSciNet is from 1974.) Nonetheless the mod-

ern reader will easily recognize Wright’s descriptions of maximal ideals and

the resulting quotients as the underpinnings of (the AW*-version of) the

tracial ultrapower. Thus one may justifiably say that the tracial ultrapower

is older than its “classical” set theoretic cousin.
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Still in functional analysis the role of an ultrapower is simultaneously

analytic and logical.

Pattern. An approximative property of a structure associ-

ated to a normed space corresponds to a precise version of

the property in an ultrapower. When an ultrapower has an

approximative property, it automatically acquires the precise

version.

We do not assert this as a theorem. Aided by appropriate definitions, it can

be supported by metamathematical results, and we give some sampling of

this in Section 4. There are several examples of this pattern in the litera-

ture, of which probably the best-known is that for Banach spaces E and F ,

we have that E is finitely representable in F if and only if E embeds isomet-

rically in an ultrapower of F ([HM, St], see also [He] for an analyst-friendly

exposition of Banach space ultraproducts). But its implementation is not

always straightforward: given one member of an “approximative/precise

property” pair, it may not be clear what the other is.

The main body of this paper concerns new examples of this pattern,

proved without logical theorems or terminology. Our primary objects are

automorphisms of II1 factors and their tracial ultrapowers. We ask: If an

automorphism has a certain property, what can we say about its ultra-

power? And what can we say about automorphisms of ultrapower algebras

in general? We will return to discussion of “approximative vs. precise” at

the end of this Introduction; here let us mention that one of the precise

properties involves local innerness, which was introduced recently in [S1].

We also note that two of our results improve on conclusions of Haagerup and

Størmer – but they had different motivations and proved only what they

needed in the context of their long article [HS2]. We start by reviewing the

main constructions and terminology.

Throughout M and N will be von Neumann algebras. We always as-

sumeM to be a II1 factor, but there are no cardinality assumptions unless

explicitly stated. Any II1 factor has a unique tracial state which we denote

by τ , avoiding subscripts when context makes the ambient algebra clear.

The L2 norm on a II1 factor is ‖x‖2 =
√
τ(x∗x), and it induces the strong

topology on bounded subsets. We write U(N ) for the unitary group of N .

Let ω be a free ultrafilter on N, which one may choose to think of as an

element of βN \N. Set Iω ⊂ `∞(M) to be the two-sided ideal of sequences

(xj) with ‖xj‖2 → 0 as j → ω. Then Iω is a maximal ideal of `∞(M),

and the quotient (`∞(M)/Iω) , Mω is a II1 factor. (See [HL, Theorem
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4.1] for an elegant proof that Mω is a von Neumann algebra. It follows

easily from the definition of an ultrafilter that any two projections in Mω

are comparable, making it a factor.) We call Mω a tracial ultrapower of

M. It is big – even its maximal abelian *-subalgebras fail to be countably-

generated ([P1, Proposition 4.3]). Elements of Mω will be denoted either

by a capital letter, e.g. X, or by a sequence (xj) ∈ `∞(M) representing the

coset, following convention by omitting “+Iω.” For any self-adjoint element,

positive element, projection, or unitary inMω, we can and always do choose

a representing sequence in which all terms have this same property. (This

has been proved in many places – see [HL, Theorem 4.10] for a very general

result.) We also identify M with the subalgebra of constant sequences.

Interest in Mω has largely focused on the relative commutant M′ ∩Mω,

which is the algebra of ω-central sequences. See, for instance, the celebrated

papers of McDuff ([McD]) and Connes ([C2]). Ge and Hadwin showed

([GH, Theorem 3.2]) that if M is countably-generated and one assumes

the continuum hypothesis, the inclusion M ⊂ Mω is independent (up to

isomorphism) of the choice of ω.

There are many variations of this. Sakai actually showed that the quo-

tient of a finite von Neumann algebra by a maximal ideal is a finite factor, so

one may construct ultrapowers over larger index sets. One may also replace

`∞(M) by a direct sum of arbitrary finite factors {Mj}, in which case the

quotient by a maximal ideal is called a tracial ultraproduct of the {Mj}.
When N is not finite, one may still define Iω as the bounded sequences that

go to 0 *-strongly as n→ ω, but this is not an ideal of `∞(N ). Appropriate

generalizations of M′ ∩Mω and Mω that are valid for arbitrary N were

first defined by Connes ([C1, Section II]) and Ocneanu ([O, Chapter 5.1]),

respectively. Over in the category of C*-algebras, ultrapowers are defined

essentially as they are for Banach spaces: change Iω to the closed ideal of

sequences that converge to 0 in norm as n → ω. And finally, there is the

model theoretic ultrapower, in which Iω is the algebraic ideal in `∞(M)

consisting of sequences that are 0 in a neighborhood of ω. We have listed

all these constructions mostly to remind the reader what we are not doing.

Now we turn to automorphisms. Here are some ways in which an auto-

morphism θ of a II1 factor can be “close to inner.”

• We say θ is pointwise inner if, on any self-adjoint element, it agrees

with some inner automorphism.

• We say θ is locally inner if, on any element, it agrees with some

inner automorphism. More generally, for a cardinal κ we say that θ
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is κ-locally inner if, on any set of ≤ κ elements, it agrees with some

inner automorphism.

• We say θ is approximately inner if, for any finite set {xk} and ε > 0,

there is a unitary u with

max
k
‖θ(xk)− uxku∗‖2 < ε.

We should immediately remark that the “real” definition of pointwise

innerness, due to Haagerup and Størmer ([HS1, Definition 12.3]) and appli-

cable to any von Neumann algebra, is that for any normal state ϕ, there

is a unitary u with ϕ = ϕ ◦ Ad(u). Thus it is a predual version of local

innerness (although it came first, and it uses only the positive part of the

predual). In a II1 factor, this is equivalent to the definition above ([HS2,

Lemma 2.2]), which may be thought of as “1
2
-local innerness.” Now if κ is

the minimal cardinality of a generating set, and κ > κ′ > κ′′ ≥ 1, we have

inner⇔ κ-locally inner⇒ κ′-locally inner(1.1)

⇒ κ′′-locally inner⇒ locally inner⇒ pointwise inner.

Somewhat surprisingly, in a countably-generated II1 factor these distinc-

tions are meaningless: pointwise innerness already implies innerness ([HS1,

Proposition 12.5]). But for general II1 factors, none of the one-way impli-

cations in (1.1) can be reversed ([S3, Proposition 2.2, Theorem 2.5, and

Section 4.2]), except that we have no examples to distinguish the classes of

κ-locally inner automorphisms, 1 ≤ κ ≤ ℵ0. They are all the same if every

countably-generated von Neumann algebra is singly-generated, which is one

formulation of the famous generator problem ([S4, Theorem 3.4]).

Approximate innerness in a II1 factor M says that θ belongs to the

closure of the inner automorphisms in the point-strong topology. Recall

that Murray and von Neumann defined a II1 factor M to have property

Γ if for any ε > 0 and finite set {xj} ⊂ M, there is a unitary u with

τ(u) = 0 and maxj ‖uxj − xju‖2 < ε ([MvN, Definition 6.1.1]). Property Γ

is approximative; we discuss it further in Example 4.2. It is mentioned here

because for countably-generated M, the inner automorphisms are point-

strong closed (and thus approximately inner implies inner) if and only ifM
does not have Γ ([Sa2], [C1, Section III]). Examples: free group factors do

not have Γ, while the hyperfinite factor, which we denote throughout the

paper as R, does. Approximate innerness is evidently implied by ℵ0-local

innerness, so an affirmative answer to the generator problem would mean

that approximate innerness is implied by local innerness.
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Here are our main results. Some of the terms are not explicitly defined

until later in the text.

(1) An automorphism of a II1 factor is approximately inner if and only

if the ultrapower of the automorphism is ℵ0-locally inner (Theorem

2.1). Also, when an automorphism of an ultrapower is approximately

inner, it is already ℵ0-locally inner (Corollary 3.2).

(2) The ultrapower of an outer automorphism is always outer (Theorem

2.5).

(3) When two unital *-homomorphisms from a separable C*-algebra to

an ultrapower are weakly approximately unitarily equivalent, they

are already unitarily equivalent (Theorem 3.1). If in addition the C*-

algebra is nuclear, unitary equivalence follows merely from equality

of the induced traces (Corollary 3.4).

(4) Any automorphism of an ultrapower is pointwise inner, but it need

not be locally inner (Corollary 3.6(2)).

Now we return to “approximative vs. precise,” immediately replacing

these terms with a more accurate one.

Terminology. Let P and P̂ be properties that are meaningful in some class

of normed space structures (Banach spaces, tracial von Neumann algebras

with automorphism, etc.), and suppose that a structure has P if and only

if any ultrapower (based on a free ultrafilter of N) has P̂ . Then we say that

P is local and call it the localization of P̂ or simply “local P̂ .”

We hesitate to call this a definition, as we have not defined “normed

space structures” either in general or in the specific cases of interest. In any

event this terminology is only used to talk about the results in Sections 2

and 3, not to state or prove them.

Localization is a well-known phenomenon in Banach space theory. We

summarize some of its main properties, borrowing from the elegant discus-

sion in Henson’s article [H].

• Not all properties are local or have localizations. It turns out that

a property is local if and only if the class of spaces possessing it is

closed under isometry, ultrapower, and ultraroot ([H, p.127]). (An

ultraroot of a Banach space X is any Banach space having an ultra-

power isometric to X.)

• The properties P and P̂ are equivalent in ultrapowers. This fol-

lows from the fact that X and XU have isomorphic ultrapowers ([H,

Corollary 1.11 and Theorem 1.13]). For if (XU)V ' XV , then XU
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has P̂ ⇐⇒ X has P ⇐⇒ XV ' (XU)V has P̂ ⇐⇒ XU has P .

As a consequence, for a local property P we can always make the

uninteresting choice P̂ = P .

• The property P̂ need not be either strictly stronger or strictly weaker

than P . However, if P is axiomatizable – which amounts to being

local and closed under ultraproduct – then there is a certain canon-

ical choice for P̂ which is at least as strong as P ([H, Theorem 1.9

and 1.20]). Loosely speaking, axiomatizable properties assert exis-

tence, as opposed to non-existence, of approximate solutions. (See

Section 4: axiomatizable properties can be expressed as approxi-

mate satisfaction of a set of positive bounded sentences, and the

canonical strengthening is the switch from approximate satisfaction

to satisfaction, as in (4.1).)

• This analysis would not change if we used any countably incom-

plete ultrafilter. (An ultrafilter is countably incomplete if it has a

countable collection of members with empty intersection.) But the

pattern would never be realized in a nontrivial way if we allowed

all ultrafilters, as any model is an ultrapower of itself. See [GH,

Section 6] for more on the distinct behavior of ultrapowers based on

ultrafilters that are not countably incomplete.

Henson approaches this topic via positive bounded logic, a version of

model theory that interacts well with the ultraproducts of functional analy-

sis. At this writing it is a topic of current interest to apply positive bounded

logic, or one of its equivalents, to structures like the ones considered in this

paper. We give some indication of the payoffs in Section 4.

With this terminology in place, the four main results enumerated above

are reflected in Table 1. The second and fourth rows should be read right-

to-left to match the sense of the corresponding statements.

Acknowledgments. We thank Nate Brown, Ward Henson, Narutaka

Ozawa, and Nik Weaver for valuable comments.

P (“approximative”) P̂ (“precise”)
approximate innerness ℵ0-local innerness

innerness innerness
weak approximate unitary equivalence unitary equivalence

“approximate pointwise innerness” (universal) pointwise innerness
Table 1. Properties of models, with corresponding proper-
ties of their ultrapowers, in the context of this paper.
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2. Relations between an automorphism and its ultrapower

A family {θj} ⊂ Aut(M) determines an automorphism Πθj of `∞(M)

that descends to a well-defined automorphism of Mω,

(θj) : (xj) 7→ (θj(xj)).

This automorphism is called an ultraproduct of the {θj}, and one can only

recover the representing sequence (θj) up to an obvious equivalence relation.

(The term “liftable,” which would seem appropriate here, has a different

established meaning for automorphisms of ultrapowers ([O, Section 5.2]).)

It is natural to wonder whether every automorphism of Mω is such an

ultraproduct. We will show elsewhere, in joint work with Ilijas Farah, that

sometimes the answer is negative. (The first version of this result was proved

in unpublished work of Farah and Nik Weaver.)

In any case, the subgroup {(θj) | {θj} ⊂ Aut(M)} < Aut(Mω) itself

contains two distinguished subgroups: those for which each θj is some fixed

θ (in which case we denote the ultrapower automorphism by θω), and those

for which each θj is inner. The latter is nothing but the inner automorphisms

of Mω. We determine the intersection of these two subgroups in Theorem

2.5 below.

For countably-generated factors, the approximate innerness of θ amounts

to the fact that θω agrees with an inner automorphism of Mω on the sub-

algebra M. This is well-known, but here we break up the logic in order to

emphasize the roles of cardinality and local innerness.

Theorem 2.1. For an automorphism θ of a II1 factor M, these conditions

are equivalent:

(1) θ is approximately inner;

(2) θω is ℵ0-locally inner;

(3) θω is approximately inner.

The following condition implies the previous ones and is equivalent to them

if M is countably-generated, but not in general:

(4) θω agrees with an inner automorphism of Mω on M.

Proof. (1) ⇒ (2): Given a countable family {Xn} = {(xnj )}, use the ap-

proximate innerness of θ to find unitaries uj such that

‖θ(xnj )− ujxnj u∗j‖2 ≤ 2−j, ∀n ≤ j.

Then for each n,

Ad((uj))(X
n) = (ujx

n
j u
∗
j) = (θ(xnj )) = θω(Xn).
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(3) ⇒ (1): Given ε > 0 and a finite set {xn} ⊂ M ⊂ Mω, by the

approximate innerness of θω we can find U = (uj) ∈ U(Mω) such that

ε

2
≥ max

n
‖θω((xn))− U(xn)U∗‖2 = max

n
lim
j→ω
‖θ(xn)− ujxnu∗j‖2.

Thus there must be some index j0 with

max
n
‖θ(xn)− uj0xnu∗j0‖2 < ε,

as required.

(4) ⇒ (1): Given ε > 0 and a finite set {xn} ⊂ M ⊂ Mω, use the

hypothesis to find (uj) ∈ U(Mω) such that θω agrees with Ad((uj)) on all

(xn). This means

0 = lim
j→ω
‖θ(xn)− ujxnu∗j‖2, ∀n.

Again there must be some index j0 with

max
n
‖θ(xn)− uj0xnu∗j0‖2 < ε,

as required.

The implications [(2) ⇒ (3)] and (under the hypothesis that M is

countably-generated) [(2) ⇒ (4)] are trivial.

In [S3, Theorem 2.5], we displayed an outer ℵ0-locally inner automor-

phism θ of a II1 factor M that was constructed as a union ∪α<ℵ1Mα.

This satisfies (1), since ℵ0-local innerness implies approximate innerness.

We indicate why (4) fails, referring the reader to [S3] for supporting de-

tails. It is required to show that an automorphism of the form Ad((uj))

cannot agree with θω on all of M ⊂ Mω. Let each uj ∈ Mαj
, and set

β = (supαj) + 1 < ℵ1. By construction Mβ = M2 ⊗M(supαj); let x ∈ Mβ

be the element ( 1 0
0 0 ) ⊗ 1. Again by construction θ(x) 6= x. Thus, viewing

x ∈M ⊂Mω,

Ad((uj))((x)) = (ujxu
∗
j) = (x) 6= (θ(x)) = θω((x)). �

Remark 2.2.

(1) The equivalence of (2) and (3) in fact holds for all automorphisms

of Mω (Corollary 3.2).

(2) Haagerup and Størmer showed that if θω is inner, then θ is approx-

imately inner ([HS2, Theorem 6.2]). Theorem 2.1 gets the same

conclusion from a weaker hypothesis, approximate innerness of θω.

This suggests that their stronger hypothesis should have a stronger

conclusion, and indeed it does (Theorem 2.5).
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(3) Since the implication [(1) ⇒ (2)] is based on an ultrafilter of N, one

might hope that for a suitable ultrafilter of a larger index set, the

ultrapower of an approximately inner automorphism may actually

be inner. This does not happen (Theorem 2.5).

Some parts of the next lemma are probably known, but we lack a refer-

ence. We thank Narutaka Ozawa for suggesting the use of Dixmier averag-

ing, which simplified our original argument.

We follow the convention of denoting the norm in B(M, L2(M)) by

‖ · ‖∞,2.

Lemma 2.3. Let M be a II1 factor.

(1) For any u ∈ U(M) we have

‖u− τ(u)1‖2 ≤ ‖Ad(u)− id‖∞,2.

(2) Consider the following groups equipped with metrics: (inner auto-

morphisms of M, ‖ · ‖∞,2) and ((U(M)/T) = projective unitary

group of M, quotient of the L2 metric). Writing u for the coset

of u in (U(M)/T), the group isomorphism u ↔ Ad(u) is Lipschitz

continuous.

(3) The inner automorphisms of M are complete in ‖ · ‖∞,2.

Proof. Given u ∈ U(M), Dixmier’s averaging theorem ([D, Théorème 12])

says that conv{vuv∗ | v ∈ U(M)}
‖‖
∩ C = {τ(u)1}. So for any ε > 0 we

can find unitaries v1, . . . vn and positive scalars c1, . . . cn with
∑
cn = 1 such

that ‖
∑
cjvjuv

∗
j − τ(u)1‖2 < ε. (We only require the L2 estimate.) Then

we have the L2 approximations

τ(u)1
ε
≈
∑

cjvjuv
∗
j =

∑
cjvj(uv

∗
ju
∗)u

‖Ad(u)−id‖∞,2

≈
∑

cjvj(v
∗
j )u = u.

Since this is true for any ε, we obtain (1).

The function dist(u, v) = min|λ|=1 ‖u−λv‖2 defines a metric on (U(M)/T)

(essentially because T is a closed subgroup whose multiplicative actions on
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U(M) are isometric). We compute

[dist(u, v)]2 = min
|λ|=1
‖u− λv‖22(2.1)

= min
|λ|=1
‖uv∗ − λ‖22

= min
|λ|=1
‖(uv∗ − τ(uv∗)) + (τ(uv∗)− λ)‖22

= ‖uv∗ − τ(uv∗)‖22 + min
|λ|=1
‖τ(uv∗)− λ‖22

= ‖uv∗ − τ(uv∗)‖22 + (1− |τ(uv∗)|)2

≤ ‖uv∗ − τ(uv∗)‖22 + (1− |τ(uv∗)|2)

= 2‖uv∗ − τ(uv∗)‖22
≤ 2‖Ad(uv∗)− id‖2∞,2
= 2‖Ad(u)− Ad(v)‖2∞,2.

The fourth step is justified because (uv∗ − τ(uv∗)) is orthogonal to the

scalars, and the second-to-last step is (1). By an easy use of the triangle

inequality, ‖Ad(u) − Ad(v)‖∞,2 ≤ 2‖u − v‖2, and this remains true if v is

multiplied by any unit scalar:

(2.2) ‖Ad(u)− Ad(v)‖∞,2 ≤ min
|λ|=1

2‖u− λv‖2 = 2 dist(u, v).

Lipschitz continuity of the group isomorphism in (2) follows from (2.1) and

(2.2).

For (3), it suffices by (2) to show that (U(M)/T) is complete in the

quotient of the L2 metric. So let {uj} ⊂ (U(M)/T) be a Cauchy sequence.

Choose a subsequence with dist(ujk , ujk−1
) < 2−k. Multiplying each ujk in

turn by an appropriate unimodular scalar (and still denoting the sequence by

{ujk}), we may obtain ‖ujk − ujk−1
‖2 < 2−k. By L2 completeness of U(M),

the sequence {ujk} converges in L2 to some u ∈ U(M). It is immediate that

{ujk} converges to u in the quotient metric, and the Cauchy sequence {uj}
must converge to u as well. (A general fact, proved in the same way: when

a group is a complete metric space, and a closed subgroup acts isometrically

by right multiplication, then the left coset space is complete in the quotient

metric.) �

Remark 2.4. The constant 2 in inequality (2.2) is sharp, and the isomor-

phism in Lemma 2.3(2) is not isometric. This can be verified with unitaries

from a copy of M2 inside M. The inequalities in Lemma 2.3(1) and (2.1)

are probably true with better constants.

Theorem 2.5. Let θ be an automorphism of the II1 factor M. If θω is

inner, then θ is inner.
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Proof. Suppose θω = Ad((uj)). For each j find a contraction xj ∈ M such

that

‖[θ − Ad(uj)](xj)‖2 ≥
1

2
‖θ − Ad(uj)‖∞,2

and compute

0 = ‖θω((xj))− Ad((uj))((xj))‖2
= lim

j→ω
‖[θ − Ad(uj)](xj)‖2

≥ 1

2
lim
j→ω
‖θ − Ad(uj)‖∞,2.

Lemma 2.3(3) then implies that θ is inner. �

Theorem 2.5 is valid for any ultrafilter, not just ω ∈ (βN \ N), corrobo-

rating Remark 2.2(3).

From Theorem 2.1 and Theorem 2.5, we obtain new examples of outer

(even ℵ0-)locally inner automorphisms: θω, for θ outer and approximately

inner. As mentioned earlier, any countably-generated Γ factor admits such

θ.

3. Approximate equivalence for maps into ultrapowers

We first specify some notation. For y in a von Neumann algebra, we

write s`(y) for the left support of y, which is the least projection p with

py = y. When the algebra is represented on a Hilbert space the left support

is nothing but the range projection.

For unital *-homomorphisms π, ρ from a C*-algebra A to a von Neumann

algebra N , we consider the following four relations.

(1) Unitary equivalence: ∃u ∈ U(N ), (Ad u) ◦ π = ρ.

(2) Approximate unitary equivalence: ∃{uα} ⊂ U(N ), (Ad uα) ◦ π → ρ

in the point-norm topology.

(3) Weak approximate unitary equivalence: ∃{uα} ⊂ U(N ), (Ad uα) ◦
π → ρ, and ∃{vα} ⊂ U(N ), (Ad vα)◦ρ→ π, both in the point-weak

topology. (It makes no difference to use the point-strong or point

strong*, as first pointed out in [Ha1, Section 1].)

(4) Equal rank : for all x ∈ A, s`(π(x)) ∼ s`(ρ(x)).

Obviously conditions (1) through (3) are progressively weaker. We al-

ways have the implication [(2) ⇒ (4)], but [(3) ⇒ (4)] holds if and only if

N is a direct sum of σ-finite von Neumann algebras. To see these impli-

cations, note that s`(π(x)) = χC\{0}(π(x∗x)) and apply [S2, Theorem 5.4].

As for the failure of the second implication when N is not a direct sum of

σ-finite algebras, consider π, ρ : C2 → N such that π(1 ⊕ 0) and ρ(1 ⊕ 0)
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have equal central support, while one is ℵ1-homogeneous and the other is

ℵ0-homogeneous ([S1, Theorem 3.5 and Proposition 3.8]).

There is much left to understand about the partial validity of the con-

verses to these implications. We think of these as generalizations of Voiculescu’s

noncommutative Weyl-von Neumann theorem ([V, Theorem 1.5]), as Had-

win’s beautiful reformulation ([Ha1, Theorem 3.14]) says that [(4) ⇒ (2)]

when N = B(H). In general the implication [(4) ⇒ (3)] can fail even for A

separable and N = R ([Ha2, Corollary 3.5]). See [Ha2, DH, S2] for more

discussion.

In case N is a II1 factor, the conditions above can be simplified and

related to other familiar terms. The net {vα} is not needed in (3), as

‖uαπ(x)u∗α − ρ(x)‖2 → 0 ⇐⇒ ‖π(x)− u∗αρ(x)uα‖2 → 0.

Also (4) is the same as requiring τ ◦π = τ ◦ρ ([DH, Lemma 3]). Viewing an

automorphism as a *-homomorphism from N to N , approximate innerness

amounts to being weakly approximately unitarily equivalent to the identity.

And any pair of automorphisms satisfy (4), by uniqueness of the trace.

Actually the only factors that admit “rank-changing” automorphisms are

those II∞ factors whose fundamental group is nontrivial.

In the rest of this section we focus on N = Mω. The main results are

that [(3) ⇒ (1)] for A separable and, using a result of Ding and Hadwin,

[(4) ⇒ (1)] if in addition A is nuclear.

Theorem 3.1. Let A be a separable C*-algebra,M be a II1 factor, and π, ρ :

A→Mω be unital *-homomorphisms. If π and ρ are weakly approximately

unitarily equivalent, then they are unitarily equivalent.

Proof. Let {xk} ⊂ A1 be a countable generating set for A, and let π(xk) =

Ak = (akj ), ρ(xk) = Bk = (bkj ). Although nets are unavoidable in the general

definition of weak approximate unitary equivalence, here a sequence will

work. For each n ∈ N find a unitary Un with

max
1≤k≤n

‖UnAkUn∗ −Bk‖2 ≤
1

n
.

It is straightforward to check that Ad (Un) ◦ π → ρ in the point-strong

topology.

Now let Un = (unj ). For k ≤ n we have

lim
j→ω
‖unj akjun∗j − bkj‖2 ≤

1

n
.

We consider the function

f : U(Mω)→ [0, 2],
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W = (wj) 7→
∑
k

2−k‖WAkW ∗ −Bk‖2 = lim
j→ω

∑
k

2−k‖wjakjw∗j − bkj‖2.

(The interchange of limits is justified by the fact that the functions {(j 7→
2−k‖wjakjw∗j − bkj‖2)}k are absolutely summable in `∞ = C(βN), so evaluat-

ing their sum at j = ω is the same as summing their individual values at

j = ω.) By construction

f(Un) =
∑
k

2−k‖UnAkUn∗ −Bk‖2

≤

(
n∑
k=1

2−k
1

n

)
+

(
∞∑

k=n+1

2−k · 2

)

≤ 1

n
+ 2−n+1.

So we have for each n,

lim
j→ω

(∑
k

2−k‖unj akjun∗j − bkj‖2

)
≤ 1

n
+ 2−n+1.

For each j, define vj from among u1
j , u

2
j , . . . , u

j
j so that the quantity in

parentheses above is minimized. Thus for j ≥ n,(∑
k

2−k‖vjakjv∗j − bkj‖2

)
≤

(∑
k

2−k‖unj akjun∗j − bkj‖2

)
.

Taking limits, we conclude that for any n,

lim
j→ω

(∑
k

2−k‖vjakjv∗j − bkj‖2

)
≤ 1

n
+ 2−n+1.

Thus with V = (vj) ∈Mω, we must have f(V ) = 0. But then V AkV ∗ = Bk

for all k, so that π and ρ are unitarily equivalent. �

Corollary 3.2. Let M be a II1 factor. If an automorphism of Mω is

approximately inner, then it is ℵ0-locally inner.

Proof. Let α be an approximately inner automorphism of Mω. Take a

countable family {Xj} ⊂ Mω, and set A = C∗({Xj}). Then the two

representations id, α ◦ id : A → Mω are weakly approximately unitarily

equivalent. By Theorem 3.1 they are actually unitarily equivalent, so that

α agrees with some inner automorphism on all the Xj. �

Theorem 3.3. ([DH, Theorem 5] or [Ha2, Theorem 2.1]) Let A be a

nuclear C*-algebra, M be a II1 factor, and π, ρ : A → M be unital *-

homomorphisms with τ ◦ π = τ ◦ ρ. Then π and ρ are weakly approximately

unitarily equivalent.
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(The theorem is stated in [DH] with the assumption that M acts on a

separable Hilbert space, but this is only so that disintegration theory may

be applied to a non-factor.)

Corollary 3.4. Let A be either a separable nuclear C*-algebra or a countably-

generated hyperfinite finite von Neumann algebra, M be a II1 factor, and

π, ρ : A → Mω be unital (normal, in the von Neumann algebra case) *-

homomorphisms with τMω ◦ π = τMω ◦ ρ. Then π and ρ are unitarily equiv-

alent.

Proof. For the C*-algebra version, combine Theorems 3.3 and 3.1. For

the von Neumann algebra version, just create a weakly dense nuclear C*-

subalgebra as the norm closure of a weakly dense increasing sequence of

finite-dimensional C*-subalgebras ([E]). �

Remark 3.5. Let N be a finitely-generated von Neumann algebra that

embeds in Rω, and fix a faithful normal trace τN on N . Jung proved in

[J] that N is hyperfinite if and only if all *-homomorphisms π : N → Rω

satisfying τRω ◦ π = τN are unitarily equivalent. The forward implication

of Jung’s theorem was also established in [FGL, Theorem 6.1] without the

hypothesis of finite generation. These results contain Corollary 3.4 for the

situation M = R.

Note that the C*-algebra version of Corollary 3.4 also follows easily from

the von Neumann algebra version, as π(A)
s
' ρ(A)

s
is a hyperfinite von

Neumann algebra to which π and ρ extend (because τ ◦ π = τ ◦ ρ).

Haagerup and Størmer showed in [HS2, Theorem 6.2] that automor-

phisms of Mω of the form θω are always pointwise inner. The first state-

ment of Corollary 3.6 shows that all automorphisms ofMω actually have a

stronger property.

Corollary 3.6. Let M be a II1 factor.

(1) Let A be a separable nuclear C*-subalgebra of Mω, and let α be an

automorphism of Mω. Then α agrees with some inner automor-

phism on A.

(2) Every automorphism of Mω is pointwise inner.

(3) Let N be a countably-generated hyperfinite von Neumann subalgebra

of Mω, and let α be an automorphism of Mω. Then α agrees with

some inner automorphism on N .

Proof. For the first part, unitize A if necessary and then note that id, α◦ id :

A → Mω satisfy the conditions of Corollary 3.4. The second part is an
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immediate consequence of the first. As in the proof of Corollary 3.4, the

third part follows from (also implies) the first. �

Remark 3.7. The second statement essentially follows from the proof of

[P2, Lemma 7.1] or [FGL, Lemma 4.2], although there only diffuse abelian

subalgebras are discussed. Note that the statement becomes false if “point-

wise inner” is replaced with “locally inner” ([S3, Proposition 2.2]).

The third statement is false without the hyperfiniteness assumption, as

the ultrapower of a non-approximately inner automorphism of M fails to

be ℵ0-locally inner (Theorem 2.1). Since countably-generated hyperfinite

von Neumann algebras are actually singly-generated ([S4, Proposition 3.5]),

one may view the asserted property of α as somewhere between pointwise

innerness and local innerness. In the taxonomy of (1.1), this is “hyperfinite-

local innerness”, where 1 > “hyperfinite” > 1
2
.

4. A logical conclusion

There are a few different versions of model theory that are compatible

with the ultrapowers of functional analysis. In this section we give a sim-

plified idea of Henson’s positive bounded logic – see [HI] for the whole story

– then sketch how “approximative/precise” property pairs can be justified

by metamathematical theorems. Tracial von Neumann algebras have not

yet been treated in the published literature as a class of model structures,

although there is current work undertaking to do so using the so-called

“model theory for metric structures” ([BBHU]), which may be viewed as

a generalization of positive bounded logic. See [BHJR] for the assertion

(without proof) that tracial von Neumann algebras are an axiomatizable

class.

As in classical model theory, one starts with a language that is suitable

for describing the functions and relations of the models one is interested in,

e.g., addition, scalar multiplication, and norm functions for Banach spaces.

Syntactically one is limited to the positive bounded formulas : the ones that

can be built out of non-strict norm inequalities via ∧, ∨, and quantification

over bounded sets – implication and negation are off limits. Given a model

M and a positive bounded sentence (=formula with no free variables) ϕ, we

write M |= ϕ and say that M satisfies ϕ if ϕ is true in M . Now suppose

only that M satisfies all sentences obtained by weakening the constants of

ϕ by arbitrarily small amounts. In this case we write M |=a ϕ and say that

M approximately satisfies ϕ.
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Positive bounded logic is a model theory in which approximate satisfac-

tion is used in place of satisfaction. There are analogues of many of the

classical theorems: compactness, Löwenheim-Skolem,  Loś, Keisler-Shelah,

etc. Regarding ultrapowers, one can deduce ([HI, Corollary 9.3 and Propo-

sition 9.26])

(4.1) M |=a ϕ ⇐⇒ Mω |= ϕ ⇐⇒ Mω |=a ϕ.

This is a version of our pattern (but not the whole story).

Below we apply positive bounded logic to revisit two examples based

on II1 factors equipped with the L2 norm. Our discussion is conceptually

accurate but brief, so we do not present the languages explicitly. The second

example is meant to reassure operator algebraists that they have already

been working with approximate satisfaction for a long time.

Example 4.1. (Second proof of Theorem 2.5) In the terminology of the

Introduction, we need to show that the localization of innerness is again

innerness.

Working in the class whose models consist of a II1 factor with a sin-

gle automorphism, the assertion that (M, θ) is inner can be expressed as

(M, θ) |= ϕ, where ϕ is the positive bounded sentence

(∃1u)(∀1x)‖θ(x)− uxu∗‖2 ≤ 0.

Here “∃1” means “there exists in the closed ball of radius 1”; “∀1” is similar.

According to (4.1) the localization of innerness is (M, θ) |=a ϕ. This means

that (M, θ) satisfies every sentence of the form

(4.2) (∃1+δ1u)(∀1−δ2x)‖θ(x)− uxu∗‖2 ≤ δ3,

for arbitrarily small δj. The u whose existence is asserted by (4.2) need

not be unitary, but taking scalar x gives uu∗ ≈ 1 in L2, which implies that

there is a unitary near u that will satisfy a slightly worse bound. Then the

sentences (4.2) say that θ is a uniform-L2 limit of inner automorphisms.

The proof is completed by invoking Lemma 2.3(3) as before.

Example 4.2. (Property Γ) LetM be a model for the class of II1 factors,

with language sufficiently rich to allow the positive bounded sentences

ϕn : (∀1x1)(∀1x2) . . . (∀1xn)(∃1u)[
(‖u∗u− 1‖2 ≤ 0) ∧ (|τ(u)| ≤ 0) ∧

(
n∧
j=1

‖uxj − xju‖2 ≤ 0

)]
.

The condition M |= {ϕn}n∈N says that the relative commutant of any fi-

nite set in M contains a unitary with zero trace; equivalently, the relative
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commutant of any finite set in M is nontrivial. This is clearly impossible

if M is finitely-generated. In fact it is still impossible if M is countably-

generated, as M contains an irreducible hyperfinite (so singly-generated)

subfactor ([P1, Corollary 4.1]).

The condition M |=a {ϕn} says that M has property Γ. (As in the

previous example, one can L2-perturb u to a trace-zero unitary with slightly

worse bounds on the commutators.) By (4.1) this is equivalent to Mω |=a

{ϕn}, i.e. M has Γ if and only if Mω has Γ ([FGL, Corollary 5.2]). Also

by (4.1), it is equivalent to Mω |= {ϕn}, which says that any finite subset

of Mω has nontrivial relative commutant. If M is finitely-generated, a

small argument shows that this in turn is equivalent to M′ ∩ Mω 6= C.

Well-known conclusion (for finitely-generated M): M has Γ if and only if

M′ ∩Mω 6= C.

One can and should replace “finite” with “countable” in the last three

sentences. This requires a slightly different approach that appeals to the

ℵ1-saturation of Mω, and the details are omitted. Notice the similarity

between the four conditions in the previous paragraph and those of Theorem

2.1. Also notice that property Γ is the localization of “countable subsets

have nontrivial relative commutant.”

Actually there are several places in the literature on operator algebraic

ultrapowers where a logical approach would be effective, but in few, if any, of

these cases would it be shorter – especially considering the extra machinery

that must be introduced to the reader. Kirchberg simply proves the version

of ℵ1-saturation that he needs in an Appendix ([K, Lemma A.1 and Remark

A.2]), although he does not name it as such. However, in recent work with

Farah, the author has used logical methods to obtain results on ultrapowers

that may be (in some sense) inaccessible via analytic techniques. These will

appear at a later date.
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d’algèbres, in: Mathematical Interpretation of Formal Systems, North-Holland,
Amsterdam, 1955, 98–113.

[McD] D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math.
Soc. (3) 21 (1970), 443–461.

[MvN] F. J. Murray and J. von Neumann, On rings of operators IV, Ann. of Math. (2)
44 (1943), 716–808.

[O] A. Ocneanu, Actions of Discrete Amenable Groups on Von Neumann Algebras,
Lecture Notes in Mathematics 1138, Springer-Verlag, Berlin, 1985.

[P1] S. Popa, On a problem of R. V. Kadison on maximal abelian *-subalgebras in
factors, Invent. Math. 65 (1981/82), 269–281.

[P2] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J.
Operator Theory 9 (1983), 253–268.

[Sa1] S. Sakai, The Theory of W ∗-Algebras, lecture notes, Yale University, 1962.
[Sa2] S. Sakai, On automorphism groups of II1-factors, Tôhoku Math. J. (2) 26 (1974),
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