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Abstract. We propose a quantization of coarse spaces and uniform Roe algebras. The
objects are based on the quantum relations introduced by N. Weaver and require the choice
of a represented von Neumann algebra. In the case of the diagonal inclusion `∞(X) ⊂
B(`2(X)), they reduce to the usual constructions. Quantum metric spaces furnish natural
examples parallel to the classical setting, but we provide other examples that are not inspired
by metric considerations, including the new class of support expansion C∗-algebras. We also
work out the basic theory for maps between quantum coarse spaces and their consequences
for quantum uniform Roe algebras.

1. Introduction

Roe-type algebras, also known as translation invariant algebras [Roe03], are operator
algebras built out of metric or more general coarse spaces. Originally introduced by J.
Roe [Roe88] to obtain index theorems for elliptic operators on non-compact Riemannian
manifolds, they have since found applications in many directions, from the Baum-Connes
and Novikov conjectures [Yu00] to topological insulators [EM19]. Based on a wave of recent
work, we now know that in many situations these algebras are complete invariants for the
large-scale, or coarse, geometry of the underlying spaces (e.g., [BBF+22, MV25]). In this
article we point out that the entire framework implicitly relies on the simplest von Neumann
algebras, those of the form `∞(X), and we generalize to arbitrary von Neumann algebras.
This opens up a new realm of quantum coarse spaces and their associated quantum uniform
Roe algebras. Here we follow standard usage of the adjective “quantum” (much repeated
throughout the paper) as an interpretation of structures connected to Hilbert spaces as
noncommutative versions of classical counterparts [Con94, Wea01]. The foundation for our
approach is N. Weaver’s quantization of relations on a set [Wea12], as well as G. Kuperberg
and N. Weaver’s quantum approach to metric spaces [KW12].

Let us review a few concepts from coarse geometry. A coarse space consists of a set X
together with a collection E of relations which, by satisfying certain axioms, gives a notion of
boundedness. The prototype is a metric space (X, d), with E comprising all subsets of the sets
{(x, y) ∈ X ×X | d(x, y) ≤ r}; the appropriate well-behaved maps in this setting are those
for which the expansion of distances is controlled at the large scale. Importantly, though, the
axioms for coarse spaces allow for non-metric examples. In fact coarse spaces are conceptually
analogous to the much older framework of uniform spaces [Eng89, Chapter 8], in which
uniform continuity (controlled expansion of distances at the small scale) is generalized beyond
the metric setting. Given a coarse space (X, E), one may construct its uniform Roe algebra
C∗u(X, E) as follows. For any relation E on X, i.e., E ⊂ X × X, we say that an operator
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a ∈ B(`2(X)) with matrix form [axy]x,y∈X is E-controlled if {(x, y) ∈ X×X : axy 6= 0} ⊂ E.
Then C∗u(X, E) is the unital C∗-subalgebra of B(`2(X)) obtained as the norm closure of all
operators controlled by a member of E .

Our initial motivation is to propose and investigate analogues of the preceding paragraph in
which relations on a set are replaced with quantum relations. Classical uniform Roe algebras
are already noncommutative and tied to Hilbert space, so how can they be quantized? The
answer is that quantum relations rely on an underlying represented von Neumann algebra,
and quantum relations on the diagonal abelian subalgebra `∞(X) ⊂ B(`2(X)) are in one-to-
one correspondence with classical relations on X. Here we define a quantum coarse space,
which features an appropriate collection of quantum relations, and we explain how to produce
its quantum uniform Roe algebra. In case the underlying von Neumann algebra is `∞(X) ⊂
B(`2(X)), this recovers the classical theory, but there is no need for it to be commutative or
atomic. And just as in the classical setting, one gets examples from the canonical quantum
coarse structure of a quantum metric space [KW12], but also as before there are non-metric
examples of interest. We develop here a new class of C∗-algebras, support expansion C∗-
algebras, that arise as (non-metric) quantum uniform Roe algebras. We also put in due
diligence to show that many basic concepts and facts for maps between coarse spaces have
satisfactory quantum analogues.

We now give an overview of the paper. Let X be an arbitrary set, and fix a Hilbert space
H and a von Neumann algebra M⊂ B(H).

In Section 2 we review the basic theory of quantum relations developed by N. Weaver.
A quantum relation on M ⊂ B(H) is a weak∗-closed subspace V ⊂ B(H) which is also
a bimodule over M′, i.e., M′VM′ ⊂ V (see Definition 2.1). Such an object can also be
encoded by a family of pairs of projections fromM⊗̄B(`2) satisfying certain axioms; in this
form, for which no representation ofM is required, it is called an intrinsic quantum relation
on M (see Definition 2.3). In the case of a diagonal inclusion `∞(X) ⊂ B(`2(X)), a third
way of encoding the same information is as a subset E ⊂ X ×X ([Wea12, Proposition 2.2]
and Proposition 2.2), i.e., a relation. The quantum relation corresponding to E is nothing
but the set of E-controlled operators.

In Section 3 we define a quantum coarse structure on M ⊂ B(H) as a family V of
quantum relations on M ⊂ B(H) satisfying some properties which mimic the standard
axioms of coarse spaces (Definition 3.1) and, analogously, we define an intrinsic quantum
coarse structure on M as a family R of intrinsic quantum relations on M satisfying some
similar properties (Definition 3.8). The pairs (M ⊂ B(H),V ) and (M,R) are then called
a quantum coarse space and an intrinsic quantum coarse space, respectively. These notions
are canonically equivalent to each other (Corollary 3.9) and coincide in a canonical way with
classical coarse structures in the commutative counting measure case M = `∞(X). We also
show that, just as in classical coarse geometry, a quantum coarse structure is (quantum)
metrizable if and only if it is countably generated (Proposition 3.6). Immediate examples
of quantum coarse spaces come from quantum graphs and, more generally, quantum metric
spaces [KW12].

Section 4 introduces quantum uniform Roe algebras (Definition 4.1), which are simply the
unital C∗-algebras that arise as the closed union of all the quantum relations in a quantum
coarse space. In the case `∞(X) ⊂ B(`2(X)), the reader will notice that this coincides with
the usual uniform Roe algebra. Section 4.1 describes quantum versions of connectedness

2



and triviality (for which we amusingly find three distinct levels), and Section 4.2 presents
some basic examples. Intrinsic quantum relations often allow for a more intuitive approach
to quantum large scale geometry, but the construction of a quantum uniform Roe algebra
requires that M be represented. This does not muddy the waters too much, since the
representation theory of von Neumann algebras is simple. Given an intrinsic quantum coarse
structure onM, the associated quantum uniform Roe algebra is determined up to a “change
of representation” equivalence relation (Section 4.1.2; see also Theorem 6.5(2)).

Section 5 presents a new class of examples that illustrate the flexibility of our definitions
and invite further study. The prototype of a classical coarse structure arises from a metric;
the uniform Roe algebra is the closure of the operators that do not change the support of a
vector too much in terms of displacement. Analogously: if M ⊂ B(H) is equipped with a
faithful normal semifinite trace τ , we construct in Section 5.1 a C∗-algebra as the closure of
the operators in B(H) that do not change the size of subspaces affiliated with M too much
in terms of measure, where the size of a subspace is measured by applying the trace to the
associated projection in M. The explicit condition on a ∈ B(H) is the existence of λ ≥ 0
such that for all projections q ∈M,

τ(sM` (aq)), τ(sM` (a∗q)) ≤ λ · τ(q).

(Here sM` (·) denotes the left M-support, the smallest projection in M fixing the range of
the operator.) We call this C∗-algebra a support expansion C∗-algebra and show in Theorem
5.5 that it is a quantum uniform Roe algebra.

In Section 5.2 we give a vector-based version of this construction. It is in some ways
simpler and produces the same C∗-algebra whenM is abelian (Theorem 5.10), but in general
a vector support expansion C∗-algebra need not be a quantum uniform Roe algebra at all
(Theorem 5.12). In our companion paper [BES24] we study the wild jungle of (vector)
support expansion C∗-algebras arising whenM is restricted to be abelian but the constraint
functions f — meaning τ(sM` (aq)) ≤ f(τ(q)) — are not necessarily linear. Subsection
5.3 makes the observation that all *-isomorphisms between support expansion C∗-algebras
associated to II1-factors without property Γ are spatially implemented (Proposition 5.14),
and we explain how this could be a step toward rigidity-type results for quantum uniform
Roe algebras that may be pursued elsewhere.

Section 6 deals with morphisms, equivalences, and embeddings between quantum coarse
spaces — here intrinsic quantum relations provide a more suitable framework. We pro-
ceed by imposing various conditions on unital weak∗-continuous ∗-homomorphismsM→N
(“quantum functions”) so that they interact appropriately with intrinsic quantum coarse
structures. This leads to quantum versions for the following terms from coarse geometry:
coarse function, coarse isomorphism, close functions, coarse equivalence, coarse subspace,
coarse embedding, expanding, cobounded. Of course, we are especially interested in their
consequences for quantum uniform Roe algebras. Looking back to the classical scenario once
again, we know that if there is an injective coarse map f : X → Y , then there is a canonical
embedding C∗u(X) ↪→ C∗u(Y ). If f is furthermore a coarse embedding, then the image of the
embedding C∗u(X) ↪→ C∗u(Y ) is a hereditary subalgebra of C∗u(Y ); if f is a bijective coarse
equivalence, the embedding C∗u(X) ↪→ C∗u(Y ) becomes an isomorphism. These results have
quantum analogs, and we prove them in Theorem 6.5(2), Theorem 6.6, and Theorem 6.23.

Section 6.3 recasts some of our definitions in terms of natural moduli for quantum functions
between quantum metric spaces (Propositions 6.25 and 6.27). In Section 6.4 we define the
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asymptotic dimension of a (not necessarily metrizable) quantum coarse space and show that,
as in the classical setting, this notion is stable under quantum coarse embedding (Theorem
6.31).

This paper is mostly an attempt to lay the groundwork for quantum coarse geometry (al-
though we believe support expansion C∗-algebras are natural and independently interesting
operator algebras). We are hopeful that many compelling examples and phenomena are yet
to be discovered.

2. Preliminaries: quantum relations

2.1. Basic notation. Given a Hilbert space H, we denote the C∗-algebra of all bounded
operators on H by B(H) and the ideal of compact operators on H by K(H). We denote the
identity element by 1, occasionally with a subscript to indicate the scope, e.g., 1H . Given
a C∗-algebra A, we denote the set of its projections by Pr(A) and the subset of its nonzero
projections by Pr∗(A).

A measure space (X,µ) is called finitely decomposable if X has a partition into finite
measure subsets, say X =

⊔
λ∈Λ Xλ, so that A ⊂ X is measurable if and only if each A∩Xλ

is measurable, and in this case µ(A) =
∑

λ∈Λ µ(A∩Xλ). We frequently identify f ∈ L∞(X,µ)
with the corresponding operator of multiplication by f , so that L∞(X,µ) ⊂ B(L2(X,µ)).
Given a measurable A ⊂ X, χA denotes the characteristic function of A, which is a projection
in B(L2(X,µ)). In case µ is the counting measure on X, we denote the standard unit basis
of `2(X) by (δx)x∈X and, given x, y ∈ X, exy denotes the rank 1 partial isometry on `2(X)
which takes δy to δx; so, χ{x} = exx.

For a represented von Neumann algebraM⊂ B(H), we define theM-support of a vector
ξ ∈ H as the smallest projection in M fixing ξ, denoted sM(ξ). For a ∈ B(H) its left
M-support, written sM` (a), is the smallest projection q ∈ M with qa = a. This generalizes
the range projection (M = B(H)) and is equal to ∨ξ∈HsM(aξ). Here are some elementary
properties we will use in the sequel, where the sums are convergent in any sense:

(1) sM
(∑

ξj

)
≤
∨

sM(ξj); sM`

(∑
aj

)
≤
∨

sM` (aj).

2.2. Quantum relations. We recall N. Weaver’s quantum relations :

Definition 2.1. Let M ⊂ B(H) be a von Neumann algebra. A weak∗-closed M′–M′

bimodule V ⊂ B(H) is called a quantum relation on M. We denote the set of all quantum
relations on M⊂ B(H) by QRel(M⊂ B(H)).

The next proposition justifies why the objects introduced in Definition 2.1 deserve to be
called quantum relations: for a set X, quantum relations on the diagonal `∞(X) ⊂ B(`2(X))
correspond canonically to relations on X.

Proposition 2.2. ([Wea12, Proposition 2.2]). Let X be a set and consider the von Neumann
algebra `∞(X) ⊂ B(`2(X)). If E is a relation on X, then

VE =
{
a ∈ B(`2(X)) : (x, y) 6∈ E implies χ{x}aχ{y} = 0

}
is a quantum relation on `∞(X). If V is a quantum relation on `∞(X), then

EV =
{

(x, y) ∈ X2 : ∃a ∈ V for which χ{x}aχ{y} 6= 0
}
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is a relation on X. These constructions are inverse to each other.

In other words, E is the collection of matrix entries where elements of VE are allowed to
be nonzero. We say that operators in VE are controlled by E or have support controlled by
E.

N. Weaver also gave an “intrinsic” approach in which a quantum relation on M⊂ B(H)
corresponds to a family of pairs of projections inM⊗̄B(`2). This description does not require
that M act on a Hilbert space.

Definition 2.3. LetM be a von Neumann algebra and consider P = Pr(M⊗̄B(`2)) endowed
with the restriction of the weak operator topology. An open subset R ⊂ P × P is called an
intrinsic quantum relation on M if the following hold.

1. (0, 0) 6∈ R.
2. Given families of nonzero projections (pi)i∈I and (qj)j∈J in P , we have(∨

i∈I

pi,
∨
j∈J

qj

)
∈ R ⇐⇒ ∃(i, j) ∈ I × J with (pi, qj) ∈ R.

3. For all projections p, q ∈ P and all b ∈ 1M ⊗ B(`2), we have

(p, [bq]) ∈ R ⇐⇒ ([b∗p], q) ∈ R.

Here square brackets denote range projection.

We denote the set of all intrinsic quantum relations on M by IQRel(M).

The correspondence between IQRel(M) and QRel(M⊂ B(H)) is described in the follow-
ing theorem. Informally, in an associated intrinsic quantum relation the pairs (p, q) describe
corners where arrays for amplifications of operators in the quantum relation are sometimes
nonzero.

Theorem 2.4. ([Wea12, Theorem 2.32]). Let M ⊂ B(H) be a von Neumann algebra and
P = Pr(M⊗̄B(`2)). If V is a quantum relation on M, then

RV =
{

(p, q) ∈ P2 : ∃a ∈ V with p(a⊗ 1)q 6= 0
}

is an intrinsic quantum relation on M. If R is an intrinsic quantum relation on M, then

VR =
{
a ∈ B(H) : (p, q) 6∈ R ⇒ p(a⊗ 1)q = 0

}
is a quantum relation on M⊂ B(H). These constructions are inverse to each other.

We make extensive use of the notations VR and RV of Theorem 2.4 throughout the paper.
Given two faithful representations πj : M → B(Hj), j = 1, 2, Theorem 2.4 tells us

that each QRel(πj(M) ⊂ B(Hj)) is in correspondence with IQRel(M) and thus with each
other. This correspondence is discussed in [Wea12, Theorem 2.7], and for our use in the
sequel we make it entirely explicit here. Since any isomorphism between represented von
Neumann algebras can be decomposed into an amplification, a spatial isomorphism, and a
reduction [Tak02, Theorem IV.5.5], it suffices to give the quantum relation corresponding to
V ∈ QRel(M⊂ B(H)) under each of these three types of maps, which is as follows.
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• Amplification by a Hilbert space K:
V⊗̄B(K) ∈ QRel(M⊗1K ⊂ B(H)⊗̄B(K) ' B(H⊗K)). Here we are using the normal
spatial tensor product for V⊗̄B(K), meaning the weak* closure of the algebraic tensor
product V � B(K) inside B(H ⊗ K). Note that V is not amplified to V ⊗ 1K but
replaced with the “larger” V⊗̄B(K).
• Spatial isomorphism via a unitary u from H to H ′:
uVu∗ ∈ QRel(uMu∗ ⊂ B(H ′)).
• Reduction by a projection p′ ∈M′ with full central support in M′:

(p′V)|p′H ∈ QRel(p′M⊂ B(p′H)).1

For the last, the central support condition implies that p′M'M.
The diagonal intrinsic quantum relation ∆M onM is defined by (p, q) ∈ ∆M ⇐⇒ pq 6= 0.

It is easy to check that when M ⊂ B(H), V∆M = M′. We sometimes write just ∆ if the
von Neumann algebra is implicit from the context.

2.3. Operator reflexivity. From V = VRV in Theorem 2.4, we know that there are suffi-
ciently many projections in P = Pr(M⊗̄B(`2)) to determine V . Sometimes there are suffi-
ciently many projections already in the 1 × 1 level, Pr(M). We follow N. Weaver [Wea12,
Section 2.5] in the definitions below.

Definition 2.5. For any subset V ⊂ B(H), the operator reflexive closure of V is defined by

orc(V) = {a ∈ B(H) : ∀p, q ∈ Pr(B(H)), pVq = 0⇒ paq = 0}.
This is always a w∗-closed linear subspace of B(H). We say that V is operator reflexive if
V = orc(V).

It is easy to see that operator reflexive spaces are closed under intersection and operator
adjoint, and that orc(V) is the smallest operator reflexive space containing V .

If V is an M′-bimodule, then orc(V) is a quantum relation over M, and one only needs
projections in M to define it (see [Wea12, Propositions 2.15, 2.18]):

orc(V) = {a ∈ B(H) : ∀p, q ∈ Pr(M), pVq = 0⇒ paq = 0}.
Quantum relations over atomic abelian von Neumann algebras are always operator reflex-

ive. Here is a simple non-example, with supporting linear algebra details left to the reader:
identifying B(C2) with M2, the subspace {( a bc a ) | a, b, c ∈ C} is a quantum relation over
B(C2) ⊂ B(C2) that is not operator reflexive. Thanks to N. Weaver for originally suggesting
this example.

Remark 2.6. Here is the origin of the terminology. A unital operator algebra A ⊂ B(H) is
classically said to be “reflexive” if no operator outside A preserves all the invariant subspaces
of A. In fact, this is equivalent to operator reflexivity of A as defined above ([Wea12,
Proposition 2.19]); the longer term is used in [Wea12] because “reflexive” already has a
meaning for a (quantum) relation, namely, that it contains the diagonal.

Example 2.7. (cf. [Erd86]) Let M⊂ B(H). Let ϕ be any map from Pr(M) to Pr(M), and
define

Vϕ = {a ∈ B(H) : sM` (aq) ≤ ϕ(q), ∀q ∈ Pr(M)}.
1Recall that the central support of a projection in a von Neumann algebra is the smallest central projection

dominating that projection.
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Note that

(2) sM` (aq) ≤ ϕ(q) ⇐⇒ ϕ(q)aq = aq ⇐⇒ ϕ(q)⊥aq = 0.

Then Vϕ is an operator reflexive quantum relation on M. That it is a weak*-closed M′-
bimodule is perhaps easiest to see from the last condition in (2). For operator reflexivity,
suppose that a ∈ B(H) has the property that pVϕq = 0 ⇒ paq = 0 for all p, q ∈ Pr(M).
Since ϕ(q)⊥Vϕq = 0 for all q ∈ Pr(M), we have that ϕ(q)⊥aq = 0 as well, and then a ∈ Vϕ.

Example 2.7 actually characterizes operator reflexive relations, as we see in the following
proposition.

Proposition 2.8. Keep the notations of Example 2.7. For any quantum relation V on
M ⊂ B(H) we have orc(V) = VϕV , where ϕV : Pr(M) → Pr(M) is defined by ϕV(q) =
∨a∈VsM` (aq). Thus the operator reflexive relations on M ⊂ B(H) are exactly those of the
form Vϕ.

Proof. From Example 2.7 we know VϕV is an operator reflexive relation. It contains V : if
b ∈ V and q ∈ Pr(M), sM` (bq) ≤ ∨a∈VsM` (aq) = ϕV(q). This shows orc(V) ⊂ VϕV .

For the opposite inclusion, suppose p, q ∈ Pr(M) are such that pVq = 0. For any a ∈ V ,
paq = 0 and so psM` (aq) = 0. It follows that pϕV(q) = p ∨a∈V sM` (aq) = 0. If c ∈ VϕV ,
then ϕV(q) ≥ sM` (cq), so by the foregoing psM` (cq) = 0 and thus pcq = 0. This gives
c ∈ orc(V). �

Remark 2.9. Operator reflexivity relies on the relation between Pr(M)2 and B(H) consisting
of the set {((p, q), a) | paq = 0}: orc(V) is a “double-perp” or “double-commutant” type of
closure. There is a dual notion of closure in Pr(M)2, or equivalently in the space of maps
Pr(M) → Pr(M): in the language above, the “closure” of ϕ : Pr(M) → Pr(M) is ϕVϕ ,
which is ≤ ϕ. This perspective is discussed more in [Eis21, Section 4.3].

3. Quantum coarse spaces

The notion of quantum relations provides us with an appropriate framework to define
quantum coarse structures on von Neumann algebras, which in turn will allow us to define
quantum uniform Roe algebras in Section 4. In this section, we introduce quantum and
intrinsic quantum coarse spaces, notice that they are equivalent in a canonical way, and
discuss their metrizability. We postpone the investigation of morphisms and equivalences in
the category of quantum coarse spaces to Section 6.

3.1. Quantum coarse spaces. Recall that a coarse space is a set X together with a coarse
structure E ⊂ P(X2) on X, i.e., E is a family of subsets of X2 containing the diagonal
∆X = {(x, x) : x ∈ X} and which is closed under subsets, inverses,2 finite unions, and
compositions3 (see [Roe03] for a detailed monograph on coarse spaces). The elements of E
are nothing but relations on X, often called entourages in this context.

This can be generalized to the quantum world as follows.

Definition 3.1. Let M ⊂ B(H) be a von Neumann algebra. A family V of quantum
relations on M⊂ B(H) is called a quantum coarse structure on M⊂ B(H) if

2If E ⊂ X2, then the inverse of E is E−1 = {(x, y) : (y, x) ∈ E}.
3If E,F ⊂ X2, their composition is given by E ◦ F = {(x, y) : ∃z ∈ X, (x, z) ∈ E and (z, y) ∈ F}.
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1. M′ ∈ V ,
2. V1 ∈ V , V2 ∈ QRel(M⊂ B(H)), and V2 ⊂ V1 imply V2 ∈ V ,
3. V1 ∈ V implies V∗1 ∈ V (here V∗1 indicates the set of adjoints of elements of V1),

4. V1,V2 ∈ V implies V1 + V2
w∗ ∈ V , and

5. V1,V2 ∈ V implies spanw
∗
(V1V2) ∈ V .

The pair (M⊂ B(H),V ) is called a quantum coarse space.

Notice that items (1), (2), (3), (4), and (5) of Definition 3.1 are the quantum versions of
a coarse structure E containing ∆X and being closed under subsets, inverses, finite unions,
and compositions, respectively. Moreover, if M = `∞(X) and H = `2(X) for some set
X, Proposition 2.2 and [Wea12, Proposition 2.5] provide a canonical equivalence between
classical coarse structures E on X and quantum coarse structures VE = {VE : E ∈ E} on
`∞(X).

Definition 3.2. We will say that a quantum coarse structure V , or a quantum coarse space
(M⊂ B(H),V ), is operator reflexive if orc(V) ∈ V for all V ∈ V .

If U is a family of quantum relations on a von Neumann algebra M ⊂ B(H), then the
quantum coarse structure generated by U, denoted by VU, is the intersection of all quantum
coarse structures which contain U. If U consists of the single quantum relation U , we may
simply write VU instead of VU.

3.2. Metrizability of quantum coarse spaces.

Definition 3.3. ([KW12, Definition 2.3]). Let M ⊂ B(H) be a von Neumann algebra. A
family V = (Vt)t≥0 of weak∗-closed operator systems4 in B(H) is called a quantum metric
on M⊂ B(H) if

1. V0 =M′,
2. VtVs ⊂ Vt+s for all t, s ≥ 0, and
3. Vt =

⋂
s>t Vs for all t ≥ 0.

The pair (M⊂ B(H),V) is called a quantum metric space.

Notice that the definition of quantum metric implies that each Vt is a quantum relation
on M. One thinks of Vt as “distance ≤ t”. The definition also implies that the quantum
coarse structure VV generated by (M, (Vt)t≥0) is nothing but

VV =
{
V ∈ QRel(M⊂ B(H)) : ∃t ≥ 0 so that V ⊂ Vt

}
.

Clearly, VV is countably generated by (M, (Vn)∞n=0) (we discuss this further in Proposition
3.6 below).

Example 3.4. A metric space (X, d) gives rise to a quantum metric on X by setting

Vt =
{

(axy)x,y∈X ∈ B(`2(X)) : d(x, y) > t⇒ axy = 0
}
,

a “thickened diagonal” in B(`2(X)).

4A closed subspace of B(H) is an operator system if it is self-adjoint and contains 1H .
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Example 3.5. A quantum relation V ∈ QRel(M⊂ B(H)) is a quantum graph ifM′ ⊂ V and
V = V∗ (see [Wea12, Definition 2.6]), i.e., if V is a weak∗-closed operator system which is
a bimodule over M′. Then the quantum coarse structure generated by V , VV , is called the
quantum graph coarse structure given by V . It is nothing but the quantum metric in which

Vt = spanw
∗
(V · . . . · V︸ ︷︷ ︸
btc-times

)

(here the 0-fold product is interpreted as the diagonal M′).
A classical graph G with vertex set X gives rise to a quantum graph on `∞(X) ⊂ B(`2(X))

by taking
V = {(axy)x,y∈X ∈ B(`2(X)) : x, y nonadjacent⇒ axy = 0}.

In other words, the corresponding relation on X is “adjacency in G,” and the quantum graph
coarse structure is the quantum metric associated to the path metric as in Example 3.4.

In classical large scale geometry, it is well known that a coarse space is metrizable if and
only if its coarse structure is countably generated ([Roe03, Theorem 2.55]). The next result
shows that the same holds in the quantum world. We say that a quantum coarse structure
V on a von Neumann algebra M is metrizable if V = VV for some quantum metric V on
M.

Proposition 3.6. Let (M,V ) be a quantum coarse space. Then V is metrizable if and only
if it is countably generated.

Proof. As noticed before Example 3.4, if V is metrizable then V is countably generated.
Suppose then that V is the quantum coarse structure generated by a sequence of quantum

relations (Un)∞n=1 on M; replacing each Un by Un + U∗n
w∗

, if necessary, we can assume that
each Un is an operator system. We define (Vn)∞n=0 inductively by setting V0 = M′ and, for
n ≥ 0,

Vn+1 = spanw
∗
(VnVn) + Un+1.

Since both Vn and Un+1 are closed under taking adjoints, so is Vn+1. It is also clear that V
is the quantum coarse structure generated by (Vn)∞n=0, since the Vn are in V , and each Un+1

is contained in Vn+1.
Finally, since VnVn ⊂ Vn+1 for all n ≥ 0, it follows that VnVm ⊂ Vn+m for all n,m ∈ N∪{0}.

Letting Vt = Vbtc for all t ≥ 0, we obtain that V = (Vt)t≥0 is a quantum metric onM which
generates V . �

3.3. Intrinsic quantum coarse spaces. Intrinsic quantum relations play a fundamental
role in this paper, both in order to provide examples of quantum uniform Roe algebras
(Section 5) and to define morphisms between quantum coarse spaces (Section 6). We next
introduce the notion of intrinsic quantum coarse spaces, defined via the intrinsic versions
of the axioms for quantum coarse spaces. Notice that if R and R′ are intrinsic quantum
relations, then so are R ∪ R′ and R−1 = {(p, q) : (q, p) ∈ R}. As for the composition of
intrinsic quantum relations, it follows from Theorem 2.4 that R ◦ R′ should be defined as
RVRVR′

5. We have the following description, inspired by [Wea12, Proposition 1.5].

5We allow ourselves the following abuse of notation: given quantum relations V1 and V2, we let RV1V2 =
Rspanw∗

(V1V2) and RV1+V2 = RV1+V2w∗ . Notice that this is indeed an abuse of notation since V1V2 and

V1 + V2 need not be quantum relations.
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Proposition 3.7. Consider intrinsic quantum relations R1 and R2 on M. Then the com-
position

R1 ◦ R2 =
{

(p, q) ∈ P2 : ∀r ∈ P , (p, r) ∈ R1 or (r⊥, q) ∈ R2

}
is the intrinsic quantum relation corresponding to the quantum relations VR1VR2, i.e., R1 ◦
R2 = RV1V2.

Proof. To simplify notation, let V1 = VR1 and V1 = VR2 . Notice that by Theorem 2.4 we
have Ri = RVi for i ∈ {1, 2}. This will be used multiple times below.

Let (p, q) ∈ RV1V2 . Then there must be v1 ∈ V1 and v2 ∈ V2 so that p(v1v2 ⊗ 1)q 6= 0. For
any r ∈ P , we have

0 6= p(v1v2 ⊗ 1)q = p(v1 ⊗ 1)r(v2 ⊗ 1)q + p(v1 ⊗ 1)r⊥(v2 ⊗ 1)q,

so that one of the summands is not zero. Thus either (p, r) ∈ R1 or (r⊥, q) ∈ R2.
Now say (p, q) ∈ R1 ◦R2. Let K be the closure of all ξ ∈ H ⊗ `2 so that p(v⊗ 1)ξ = 0 for

all v ∈ V1. As V1 is a bimodule overM′, it follows that K is invariant underM′⊗ 1. So the
projection onto K, say r, must belong to M⊗̄B(`2). By the definition of K, we must have
that p(v ⊗ 1)r = 0 for all v ∈ V1. Therefore, (p, r) 6∈ R1; by assumption we must have that
(r⊥, q) ∈ R2. Hence there is v2 ∈ V2 so that r⊥(v2 ⊗ 1)q 6= 0. By the definition of K and r,
there must be some v1 ∈ V1 for which

p(v1 ⊗ 1)r⊥(v2 ⊗ 1)q 6= 0.

Since p(v1 ⊗ 1)r = 0, we conclude that p(v1v2 ⊗ 1)q 6= 0; so (p, q) ∈ RV1V2 . �

We can now define intrinsic quantum coarse spaces :

Definition 3.8. LetM be a von Neumann algebra and R be a family of intrinsic quantum
relations on M. The family R is called an intrinsic quantum coarse structure on M if

1. ∆M = {(p, q) : pq 6= 0} ∈ R,
2. R1 ∈ R, R2 ∈ IQRel(M) and R2 ⊂ R1 imply R2 ∈ R,
3. R1 ∈ R implies R−1

1 ∈ R,
4. R1,R2 ∈ R implies R1 ∪R2 ∈ R, and
5. R1,R2 ∈ R implies R1 ◦ R2 ∈ R.

The pair (M,R) is called an intrinsic quantum coarse space.

Theorem 2.4 provides a canonical bijection between QRel(M ⊂ B(H)) and IQRel(M),
and the discussion above shows that this bijection preserves the natural operations on each
of them. We sum this up in the following corollary.

Corollary 3.9. Let M⊂ B(H) be a von Neumann algebra. The bijective assignment

V ∈ QRel(M⊂ B(H)) 7→ RV ∈ IQRel(M)

defined in Theorem 2.4 satisfies the following:

1. RM′ = ∆M,
2. if V ∈ QRel(M⊂ B(H)), then RV∗ = R−1

V ,
3. if V1,V2 ∈ QRel(M⊂ B(H)), then RV1+V2 = RV1 ∪RV2, and
4. if V1,V2 ∈ QRel(M⊂ B(H)), then RV1V2 = RV1 ◦ RV2.

10



In light of Corollary 3.9, quantum coarse structures onM⊂ B(H) and intrinsic quantum
coarse structures onM naturally correspond, and we denote by V 7→ RV and R 7→ VR the
assignments implementing the two directions of this correspondence. We naturally say that
an intrinsic quantum coarse space (M,R) is operator reflexive if VR is operator reflexive.

Again, we may abridge notation in the commutative case: ifM = L∞(X,µ) for a finitely
decomposable measure space (X,µ), we say that V is a quantum coarse structure on X
(resp. (X,V ) is a quantum coarse space) if V is a quantum coarse structure on L∞(X,µ) ⊂
B(L2(X,µ)) (resp. (L∞(X,µ) ⊂ B(L2(X,µ)),V ) is a quantum coarse space). We treat
intrinsic coarse structures/spaces on commutative algebras similarly.

4. Quantum uniform Roe algebras

The axioms for a coarse space (X, E) imply that the set of operators in B(`2(X)) controlled
by at least one of the relations in E is a unital *-algebra, so its norm closure is a unital C∗-
algebra, called the uniform Roe algebra of (X, E) and denoted by C∗u(X, E). Because of
Proposition 2.2, this is just the closed union of the members of the corresponding quantum
coarse structure on `∞(X) ⊂ B(`2(X)). We take it as a general definition.

Definition 4.1. Let (M⊂ B(H),V ) be a quantum coarse space.

1. We call C∗u[M,V ] =
⋃
V∈V V the algebraic quantum uniform Roe algebra of (M,V ).

2. We call C∗u(M,V ) =
⋃
V∈V V

‖·‖
the quantum uniform Roe algebra of (M,V ).

We have that C∗u[M,V ] is a ∗-algebra and C∗u(M,V ) is a C∗-algebra. Classical uniform
Roe algebras are thought of as encoding large scale geometry, and much of the motivation
comes from metric spaces. We see analogous potential in the quantum metric spaces, as
introduced in [KW12] and discussed above. Definition 4.1 is general enough, however, to
include much more than metric inspiration. In Section 5 we present an entirely new class of
examples.

4.1. Basic properties.

4.1.1. The effect of choosing a different representation of M. Given two faithful represen-
tations πj : M → B(Hj), j ∈ {1, 2}, the correspondence between QRel(π1(M) ⊂ B(H1))
and QRel(π2(M) ⊂ B(H2)) is described after Theorem 2.4. Each quantum relation is trans-
formed in the same way as the underlying Hilbert space in passing from one representation to
the other by an amplification, spatial isomorphism, and reduction. As noted in [Wea12, The-
orem 2.7], this correspondence preserves diagonals (i.e., takes π1(M)′ to π2(M)′), inclusions,

adjoints, and the operations (V1,V2) 7→ V1 + V2
w∗

and (V1,V2) 7→ spanw
∗
(V1V2). It follows

that the possible quantum coarse structures and (algebraic) quantum uniform Roe algebras
on π1(M) ⊂ B(H1) and π2(M) ⊂ B(H2) also transform under change of representation in
the ways given after Theorem 2.4: from V to V ⊗̄B(K), uV u∗, or (p′V p′) |p′H . The only
fact that may not be obvious is that amplification by a Hilbert space K commutes with the
quantum uniform Roe algebra construction, as the sets involve closures in different orders:

C∗u(M,V )⊗̄B(K) =
⋃
V∈V

V
‖·‖
⊗̄B(K) =

⋃
V∈V

V⊗̄B(K)
‖·‖

= C∗u(M,V ⊗̄B(K)).
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The outside equalities are definitions. An element of the second set has the form
∑

i,j(aij ⊗
eij), where the sum is w∗-convergent and each aij is the norm limit of some {vkij}k ⊂ ∪V∈V V .

Passing to subsequences if necessary, we may assume ‖vkij−aij‖ ≤ 2−i−j−k, and then
∑

(aij⊗
eij) is the norm limit of

∑
(vkij⊗eij), so an element of the third set. The converse implication

amounts to the observation that when a matrix of operators converges in norm, so do each
of the entries.

Thus, to understand the quantum coarse structures and quantum uniform Roe algebras
that can be associated to M, it suffices to work with a specific representation of M.

4.1.2. Starting only with an intrinsic coarse space. Given an intrinsic quantum coarse space
(M,R), a representation π :M→ B(H) gives rise to the quantum coarse space (π(M) ⊂
B(H),VR) and quantum uniform Roe algebra C∗u(π(M),VR). Since many representations
are feasible, (M,R) alone only determines an equivalence class

[π(M) ⊂ B(H) ⊃ C∗u(π(M),VR)].

Here two such double inclusions are equivalent if one can be obtained from the other by a
change of representation ofM as in Section 4.1.1. Inspecting the proof of the classical struc-
ture theorem for *-isomorphisms of represented von Neumann algebras ([Tak02, Theorem
IV.5.5 and Corollary IV.5.6]), this means that the double inclusions become spatially isomor-
phic after both are amplified by a single Hilbert space whose dimension is infinite and not
less than the dimension of either of the two original Hilbert spaces. Theorem 6.5(2) treats
such “algebraically/intrinsically identical quantum coarse spaces” from a slightly different
perspective.

4.1.3. The minimal quantum coarse structure on M ⊂ B(H). Since we require quantum
coarse structures on M ⊂ B(H) to contain the quantum relation M′, and w∗-closed sub-
M′-bimodules of M′ are precisely the direct summands, we have the following minimality
result.

Proposition 4.2. For M⊂ B(H), the collection of direct summands of M′ is the minimal
coarse structure, contained in every other one. ThusM′ is the minimal (algebraic) quantum
uniform Roe algebra for M⊂ B(H), contained in every other one.

4.1.4. Connectedness. A (classical) coarse space (X, E) is connected if {(x, y)} ∈ E for all
x, y ∈ X. In the quantum world, this can be described as follows:

Definition 4.3. A quantum coarse structure V on M ⊂ B(H) is connected if C∗u(M,V )
is w∗-dense in B(H). This is equivalent to triviality of C∗u(M,V )′ (which is always a von
Neumann subalgebra of M, since M′ ⊂ C∗u(M,V )).

Notice that (X, E) is connected in the classical sense if and only if C∗u(X,VE) is w∗-dense
in B(`2(X)), so the definition above coincides with the classical one for M = `∞(X) ⊂
B(`2(X)). For (classical) coarse structures coming from metric spaces, connectedness means
that all distances are finite. There are analogues of “all distances finite” for the quantum
coarse structures of quantum metric spaces, one of which says that the union of all the
intrinsic quantum relations is exactly the linkable pairs of projections in M⊗̄B(`2) (see
[KW12, 2.11-13] or Definition 6.24 below).
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Suppose V is disconnected, and let p ∈ C∗u(M,V )′ be a nontrivial projection. Then
every V ∈ V can be decomposed as pV ⊕ (1− p)V , and each pV is a quantum relation over
pMp ⊂ B(pH). Writing pV for the collection of pV , in a straightforward way we have

V = pV ⊕ (1− p)V ,

where the summands are quantum coarse structures on pMp ⊂ B(pH) and (1 − p)M(1 −
p) ⊂ B((1 − p)H), respectively. Thus connectedness is the nonexistence of a direct sum
decomposition for V .

For a classical coarse structure V (i.e., V = VE for some coarse structure E on a set
X), the commutant C∗u(`∞,V )′ is a von Neumann subalgebra of `∞(X), so it has minimal
projections. The minimal projections correspond to connected classical coarse structures
occurring as summands of V , naturally called the connected components of V . If V arises
from a metric space, this is the decomposition into components where the metric is finite; if
the metric arises from a graph as in Example 3.5, this is the decomposition into connected
components of the graph.

A classical coarse structure with finitely many connected components can be recovered
from them. If there are infinitely many components, this recovery is not generally possible:
the collection {pV }p, where p runs over the minimal projections p ∈ C∗u(M,V )′, does
not generally determine V . For general quantum coarse structures the term “connected
component” should probably be avoided, as minimal projections in C∗u(M,V )′ may not
commute or even exist at all.

4.1.5. Triviality. We now discuss natural notions of “triviality” for quantum coarse struc-
tures. Here is a pentachotomy (list of five disjoint cases) for a quantum coarse structure V
on M⊂ B(H).

(1) Some V ∈ V is B(H); equivalently, V = QRel(M ⊂ B(H)). In this case, V is
metrizable (generated by V = B(H)).

(2) No V ∈ V is B(H), but the algebraic quantum uniform Roe algebra is B(H). This
case is nonmetrizable and nonclassical.

(3) The algebraic quantum uniform Roe algebra is not B(H), but its norm closure (the
quantum uniform Roe algebra) is. This can happen classically.

(4) The quantum uniform Roe algebra is not B(H), but its w∗-closure is.
(5) The quantum uniform Roe algebra is not w∗-dense in B(H), i.e., the quantum coarse

structure is disconnected.

Next we justify the nontrivial claims above and give examples to show that all five cases
occur.

Quantum coarse structures in (2) are necessarily nonmetrizable: by the Baire category
theorem, if H is infinite dimensional, then B(H) is not a countable union of proper closed
subspaces. An example is the collection of finite-dimensional subspaces of B(H), which is a
quantum coarse structure for B(H) ⊂ B(H). This phenomenon cannot happen for classical
algebraic uniform Roe algebras: if an operator a = (axy)x,y on `2(X) has only nonzero
coordinates, i.e., axy 6= 0 for all x, y ∈ X, and a belongs to the algebraic uniform Roe
algebra of a coarse space (X, E), then X ×X ∈ E ; so B(`2(X)) ∈ VE and we are in case (1).
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Example 4.4. We give a classical coarse structure in case (3). Recall that a relation E on N
is said to be locally finite if

{m : (m,n) ∈ E} and {m : (n,m) ∈ E}
are finite for each n ∈ N. The collection E of all locally finite relations is easily seen to be a
classical coarse structure. We have C∗u[M, E ] 6= B(`2), because an operator with all nonzero
entries is not controlled by a locally finite relation.

On the other hand, take any ε > 0 and a ∈ B(`2). The kth column of a has finite `2

norm, so the tail beyond some point has `2 norm < ε/2k+1; change all these entries to zero.
Then do the same thing for the rows of a. This produces an operator b ∈ C∗u[M, E ] with
the Hilbert-Schmidt norm of a − b (which is the `2 norm of its entries) less than ε. The
Hilbert-Schmidt norm dominates the operator norm, so C∗u(M, E) = B(`2).

We make no ruling on the meaning of “large-scale triviality”. There are at least three
choices:

• some V ∈ V is B(H) — case (1) in the pentachotomy;
• the algebraic quantum uniform Roe algebra is B(H) — cases (1) and (2);
• the quantum uniform Roe algebra is B(H) — cases (1), (2), and (3).

Depending on how much detail the reader’s quantum telescope allows, he or she may decide
which of these quantizes the coarse geometer’s slogan: the structure “looks like a quantum
point from far away.”

4.2. Examples.

4.2.1. M ' `∞(X). As mentioned at the beginning of this section, quantum uniform Roe
algebras for `∞(X) ⊂ B(`2(X)) are nothing but classical uniform Roe algebras for X.

4.2.2. M' Mn(C). ConsideringM acting on Cn, i.e., M = Mn(C) = B(Cn), we have that
M′ = C1Cn . By finite dimensionality, the quantum relations of M ⊂ B(Cn) are just the
linear subspaces of B(Cn). Therefore, since quantum coarse structures contain M′ and are
closed under subspaces, adjoints, sums, and products of quantum relations, every quantum
coarse structure on Mn(C) ⊂ B(Cn) is the collection of subspaces of some unital ∗-subalgebra
A ⊂ Mn(C). For such a quantum coarse structure, the quantum uniform Roe algebra is A.

4.2.3. M ' B(H) (infinite-dimensional). Some of the analysis above applies: with M act-
ing on H, quantum relations are w∗-closed subspaces of B(H). Any unital *-subalgebra
A0 ⊂ B(H) is the algebraic quantum uniform Roe algebra for the quantum coarse struc-
ture consisting of the finite-dimensional subspaces of A0. Thus, any unital C∗-subalgebra
A ⊂ B(H) can be obtained as a quantum uniform Roe algebra for M = B(H) ⊂ B(H)
by choosing the quantum coarse structure consisting of finite-dimensional subspaces of a
norm-dense *-algebra A0 ⊂ A.

There may be other quantum coarse structures generating A (or A0). We point out,
though, that including certain combinations of w∗-closed subspaces of A may make the
generated coarse structure too large, in the sense that it controls operators outside A. Here
is an example. Let A be the unital *-algebra `∞({odds})+c({evens}), thought of as diagonal
operators on `2(N) — here c denotes convergent sequences (the unitization of c0). Let
V1 = `∞({odds}) and V2 = spanw

∗{e2j−1,2j−1 + (e2j,2j/j)}∞j=1. Then V1 and V2 are w∗-closed

subspaces of A, but V1 + V2
w∗

is `∞({odds}) + `∞({evens}), the full diagonal.
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4.2.4. Finite-dimensional M.

Proposition 4.5. Let A,M⊂ B(H), where A is a *-algebra andM is a finite-dimensional
von Neumann algebra, both containing 1H . Then A is an algebraic quantum uniform Roe
algebra for some quantum coarse structure on M ⊂ B(H) if and only if A contains M′.
When this is the case, A is automatically norm-closed, i.e., a C∗-algebra.

Proof. Since the quantum uniform Roe algebra of a quantum coarse space (M,V ) always
contains M′, only the reverse implication requires proof. As M is finite dimensional, sup-
pose M '

⊕`
k=1 Mnk

(C), and let n =
∑`

k=1 nk. Denote by z1, . . . , z` the minimal central
projections of M. Since we assume that M′ ⊂ A, we have that z1, . . . , z` ∈ A.

First consider a multiplicity-free representation ofM on Cn, i.e., a minimal faithful repre-
sentation, with commutant equal to the center of M; that is, M =

⊕`
k=1 Mnk

(C) ⊂ B(Cn).

Let V be the set of all subspaces of B(Cn) of the form
∑`

i,j=1 Vij, where each Vij is a sub-
space of ziAzj ⊂ A. These areM′-bimodules whose union is A, and it is straightforward to
check that they satisfy the axioms for a quantum coarse structure (weak∗-closedness follows
automatically from finite dimensionality). So C∗u(M,V ) = C∗u[M,V ] = A.

An arbitrary representation M ⊂ B(H) can be obtained from the multiplicity-free rep-
resentation above by amplification, spatial isomorphism, and reduction. Each of these op-
erations preserves the relation that M′ ⊂ A, because all quantum relations, including the
diagonal quantum relation M′ and all the other quantum relations whose union is A, are
transformed in the same way. To recall from the discussion after Theorem 2.4: all are ten-
sored with some B(K), all are conjugated by a unitary with domain H, or all are reduced
by a projection p′ ∈ M′. Since these transformations also preserve closedness, this finishes
the proof. �

Proposition 4.5 characterizes the quantum uniform Roe algebras for a finite-dimensional
M⊂ B(H) as those C∗-subalgebras of B(H) that contain M′. This characterization is also
true forM' B(H), as seen above in Section 4.2.3. The reader may wonder if it is generally
true. Our next example shows that this fails already in the classical case.

4.2.5. A C∗-algebra A ⊂ B(`2) that contains the diagonal `∞ but is not a quantum uniform
Roe algebra for `∞ ⊂ B(`2). Notice that, a fortiori, A is not an algebraic quantum uniform
Roe algebra for `∞ ⊂ B(`2) either. Since this is the same as saying that A is not a uniform
Roe algebra in the classical sense, we use non-quantum terminology below.

An operator x = (xij)i,j ∈ B(`2) is called a ghost if its entries xij go to zero as i, j →∞.
Letting pn be the projection on Cn with all entries 1/n (i.e., pn is the projection onto the
constant vector (1, . . . , 1) ∈ Cn), we have that p = ⊕npn ∈ B(`2) is a noncompact ghost
projection. Let Ediag be the conditional expectation from B(`2) onto its diagonal `∞, i.e.,
Ediag((xij)i,j) = (x̄ij)i,j for all (xij)i,j ∈ B(`2), where x̄ii = xii for all i ∈ N, and x̄ij = 0 for
all i 6= j. It is straightforward to check that x−Ediag(x) is a ghost for all x in the C∗-algebra
A = C∗(p, `∞).

Suppose towards a contradiction that A is a uniform Roe algebra, say A = C∗u(N, E) for
some coarse structure E on N. Then there is an entourage E ∈ E and q ∈ B(`2) controlled
by E with ‖q − p‖ < 0.1. Notice that in each of the blocks corresponding to the summands
of p (except the 1× 1 block), q must have a nonzero offdiagonal entry. (Otherwise, compare
the actions of p and q on the unit vector with all entries corresponding to that block equal
to 1/

√
n.)
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Choosing a nonzero offdiagonal entry for q in each block, let x be the operator whose
entries are 1 in these places and 0 elsewhere. Then x is also controlled by E, so x ∈ A. But
x− Ediag(x) = x is not a ghost.

5. A new class of examples: support expansion C*-algebras

The main inspiration for coarse geometry comes from metric spaces. The standard example
of a coarse space is a metric space (X, d), where the entourages are subsets of some {(x, y) :
d(x, y) ≤ r} for r ≥ 0. In the associated uniform Roe algebra, the operators supported on
an entourage are those for which there is an r ≥ 0 such that “no point moves more than r.”
These operators could be said to have a finite scale in the sense of displacement.

The definitions of coarse geometry, classical or quantum, are broad enough to allow other
notions of scale. In this section we present a very general class of quantum coarse spaces
in which the scale pertains not to change of location as determined by a metric, but to
expansion of size as determined by a measure. The reader may see [BES24] for a detailed
study of the commutative (but not necessarily atomic) case.

Let us describe the prototype for the new class, which is a well-known classical coarse
space with classical uniform Roe algebra. A coarse structure E on N is said to be uniformly
locally finite if for any one of its entourages E ∈ E there is λ > 0 such that for any x ∈ N
both #{y ∈ X : (x, y) ∈ E} and #{y ∈ X : (y, x) ∈ E} are less than λ. In a metric
setting this says that for any r, the cardinalities of r-balls are uniformly bounded (so-called
“bounded geometry”). It is easy to see that the collection of all entourages satisfying the
above condition comprises the largest uniformly locally finite coarse structure on N. This
well-known example is not metrizable, and the associated algebraic uniform Roe algebra
consists of all operators a ∈ B(`2) for which there is a λ such that all rows and columns
of the matrix for a have no more than λ nonzero elements. In other words, if (ej)j is the
canonical orthonormal basis of `2, the supports of aej and a∗ej have no more than λ elements
for all j ∈ N. Taking linear combinations of basis elements, it follows that a satisfies the
condition

(3) #supp(aξ), supp(a∗ξ) ≤ λ ·#supp(ξ), ∀ξ ∈ `2.

The associated uniform Roe algebra, studied in [Man19], is the closure of these operators.
We may identify subsets of N with their characteristic functions, which are the projections

in `∞. The support of ξ ∈ `2, which is a set, corresponds to s`∞(ξ). Counting the support
of ξ is then the same thing as applying the standard `∞ trace to s`∞(ξ). We can interpret
(3) as saying that a and a∗ do not expand the support projection of a vector too much.

Many things about (3) allow for variation. For instance, instead of the counting measure,
we could use other measures on N, corresponding to other (possibly unbounded) traces on
`∞. Similarly, we could use L2(X,µ) and L∞(X,µ) in place of `2 and `∞. We could even
use an abstract H with an arbitrary von Neumann subalgebraM⊂ B(H), equipped with a
satisfactory notion of “size” on its projection lattice. Precisely:

Definition 5.1. LetM⊂ B(H) be a von Neumann algebra equipped with a faithful normal
semifinite trace τ . Given λ ≥ 0, we say that a ∈ B(H) is λ-vector constrained if it satisfies

(4) τ(sM(aξ)), τ(sM(a∗ξ)) ≤ λ · τ(sM(ξ)), ∀ξ ∈ H.
We say a is vector constrained if it is λ-constrained for some λ ≥ 0.
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Proposition 5.2. LetM⊂ B(H) be a von Neumann algebra equipped with a faithful normal
semifinite trace τ . The subset of all vector constrained operators forms a unital *-algebra.

Proof. It is immediate that this set contains the identity and is closed under adjoint. We
need to show that if aj is λj-constrained for j ∈ {1, 2}, then a1 +a2 and a1a2 are constrained.
These are easy computations:

τ(sM((a1 +a2)ξ)) ≤ τ(sM(a1ξ)∨sM(a2ξ))
♥
≤ τ(sM(a1ξ))+τ(sM(a2ξ)) ≤ (λ1 +λ2)τ(sM(ξ));

τ(sM(a1a2ξ)) ≤ λ1 · τ(sM(a2ξ)) ≤ λ1λ2τ(sM(ξ)).

We applied (1) at the first step of the first computation. The inequality ♥ is a standard
deduction of Kaplansky’s law p∨ q−p ∼ q−p∧ q, so that τ(p∨ q) = τ(p)+ τ(q)− τ(p∧ q) ≤
τ(p) + τ(q). We use this freely in the sequel. �

Definition 5.3. LetM⊂ B(H) be a von Neumann algebra equipped with a faithful normal
semifinite trace τ . The closure of all vector constrained operators on B(H) is called a vector
support expansion C∗-algebra.

Motivated byM = `∞ as discussed at the beginning of this section, one might expect that
vector support expansion C∗-algebras are quantum uniform Roe algebras. In many cases of
interest this is indeed the case, but the general answer turns out to be no! The issue, roughly,
is that quantum uniform Roe algebras are about projections, and it is not always true that
projections in a represented von Neumann algebra “come from” vectors. We explain this
more in Section 5.2.

For now we recast expansion in terms of projections, and we show that this does lead to
a rich class of quantum uniform Roe algebras.

5.1. Support expansion C*-algebras. Let M ⊂ B(H), and let τ be a faithful normal
semifinite trace on M. For λ ≥ 0, consider the following condition on a ∈ B(H):

(5) τ(sM` (aq)), τ(sM` (a∗q)) ≤ λ · τ(q), ∀q ∈ Pr(M).

The condition above is a strengthening of (4) (see the first paragraph of the proof of Theorem
5.10). One can use the same argument as in Proposition 5.2 to see that the set of operators
in B(H) satisfying (5) for some λ is a unital *-algebra; this is subsumed in Theorem 5.5
below, where we identify this set as an algebraic quantum uniform Roe algebra.

Definition 5.4. Given λ ≥ 0, a function ϕ : Pr(M)→ Pr(M) is λ-constrained if

τ(ϕ(q)) ≤ λτ(q) for all q ∈ Pr(M).

We say ϕ is constrained if it is λ-constrained for some λ.

Note that the set of constrained functions is closed under composition and join: if ϕj is
λj-constrained for j ∈ {1, 2},

τ(ϕ2(ϕ1(q))) ≤ λ2τ(ϕ1(q)) ≤ λ2λ1τ(q);

τ(ϕ1(q) ∨ ϕ2(q)) ≤ τ(ϕ1(q)) + τ(ϕ2(q)) ≤ (λ1 + λ2)τ(q).

For any pair of constrained functions ϕ, ψ : Pr(M)→ Pr(M), we define

Vϕ,ψ = Vϕ ∩ (Vψ)∗,
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where, as defined in Example 2.7,

Vϕ = {a ∈ B(H) : sM` (aq) ≤ ϕ(q), ∀q ∈ Pr(M)}.
As noted in Example 2.7, Vϕ,ψ is an operator reflexive quantum relation onM⊂ B(H). The
main statement of the next theorem is that the quantum coarse structure generated by the
Vϕ,ψ is simply the collection of their quantum subrelations.

Theorem 5.5. Let M ⊂ B(H) and let τ be a faithful normal semifinite trace on M. The
collection

Vτ = {V ∈ QRel(M⊂ B(H)) : ∃ constrained ϕ, ψ : Pr(M)→ Pr(M) such that V ⊂ Vϕ,ψ}
is an operator reflexive quantum coarse structure on M. Moreover, the algebraic quantum
uniform Roe algebra C∗u[M,Vτ ] is exactly the set of a ∈ B(H) satisfying (5) for some λ ≥ 0.

Proof. Let us check that Vτ has the five properties needed to be a quantum coarse structure
(see Definition 3.1). From its form, Vτ is closed under sub-quantum relation and adjoint.

Diagonal. The identity Pr(M)→ Pr(M) is a 1-constrained function on Pr(M). Observe
that M′ ⊂ Vid,id because for a ∈M′ and q ∈ Pr(M) we have sM` (aq) = sM` (qaq) ≤ q.

Sum. Suppose aj ∈ Vϕj ,ψj
for j ∈ {1, 2}. Then a1 + a2 ∈ Vϕ1∨ϕ2,ψ1∨ψ2 : for any q ∈ Pr(M),

sM` ((a1 + a2)q) ≤ sM` (a1q) ∨ sM` (a2q) ≤ ϕ1(q) ∨ ϕ2(q),

and a similar computation holds for sM` ((a1 + a2)∗q). We noted before the theorem that
ϕ1 ∨ ϕ2 and ψ1 ∨ ψ2 are constrained.

Product. Again suppose aj ∈ Vϕj ,ψj
for j ∈ {1, 2}. Then a1a2 ∈ Vϕ1◦ϕ2,ψ2◦ψ1 : for any

q ∈ Pr(M),

ϕ1(ϕ2(q))a1a2q = ϕ1(ϕ2(q))a1ϕ2(q)a2q = a1ϕ2(q)a2q = a1a2q,

and a similar computation holds for ψ2(ψ1(q))(a1a2)∗q. We noted before the theorem that
ϕ1 ◦ ϕ2 and ψ2 ◦ ψ1 are constrained.

Since the Vϕ,ψ are operator reflexive, Vτ is an operator reflexive quantum coarse structure.
Finally we check that the algebraic quantum uniform Roe algebra, the union of the Vϕ,ψ,

is exactly the set of operators T satisfying (5) for some λ. For this, it suffices to show that
τ(sM` (aq)) ≤ λτ(q) for all q ∈ Pr(M) if and only if a belongs to some Vϕ with ϕ being
λ-constrained. The forward implication follows by letting ϕ(q) = sM` (aq). For the reverse
implication, take any q ∈ Pr(M) and note that τ(sM` (aq)) ≤ τ(ϕ(q)) ≤ λτ(q). �

The following definition should be compared with Definition 5.3 (the “vector” version).

Definition 5.6. Let M⊂ B(H), and let τ be a faithful normal semifinite trace on M. We
say that the uniform Roe algebra C∗u(M,Vτ ) is a support expansion C∗-algebra.

From the definition of a quantum coarse structure, M′ lies inside any algebraic quantum
uniform Roe algebra. We next show that support expansion C∗-algebras also containM yet
cannot be all of B(H) unless M is finite-dimensional.

Theorem 5.7. Let M⊂ B(H), τ be a faithful normal semifinite trace on M, and Vτ be the
quantum coarse structure as in Theorem 5.5.

1. The algebraic uniform Roe algebra C∗u[M,Vτ ] contains M, and thus C∗u(M,Vτ ) con-
tains C∗(M∪M′).

2. If M is infinite-dimensional, C∗u(M,Vτ ) is not all of B(H).
18



Proof. (1) We make use of the right M-support sMr of an operator, which is defined analo-
gously to sM` : sMr (a) is the smallest projection q ∈ M with aq = a. Note that the left and
rightM-supports of any element ofM are Murray-von Neumann equivalent via the partial
isometry in the polar decomposition. Thus any a ∈M is 1-constrained:

τ(sM` (aq)) = τ(sMr (aq)) ≤ 1 · τ(q), ∀q ∈ Pr(M),

and analogously for a∗.
(2) It follows from Section 4.1.1 that we may assume M is in “standard form,” which we

recall for the reader’s convenience. On the subspace of x ∈ M for which ‖x‖2 =
√
τ(x∗x)

is finite, this quantity defines a norm. The completion of this normed space is denoted
L2(M, τ), and M⊂ B(L2(M, τ)) as densely-defined left multiplication operators.

First we explain how to pick sequences (pk)k∈N and (qk)k∈N of nonzero pairwise orthogonal

finite-trace projections in M with limk
τ(pk)
τ(qk)

= 0. If τ is a finite trace, then limk τ(qk) = 0

for any sequence (qk)k∈N of nonzero pairwise orthogonal projections inM, and we may take
(pk)k∈N to be a subsequence of any such (qk)k∈N whose traces decrease quickly enough. If
τ is infinite, semifiniteness of τ allows us to find an infinite family of pairwise orthogonal
projections (pk)k∈N each of which has finite trace at least 1. We can then form the sequence
(qk)k∈N by letting each qk be an appropriate sum of disjoint subsets of (pk)k∈N.

Fix (pk)k∈N and (qk)k∈N as above. If p ∈ M, we let p̂ be p viewed as an element in
L2(M, τ). Let b ∈ B(L2(M, τ)) be the infinite-rank partial isometry that sends each p̂k to√

τ(pk)
τ(qk)

q̂k and is zero off the span of {p̂k}. We show that for any a satisfying (5), ‖b− a‖ ≥ 1

by examining the action on unit vectors p̂k√
τ(pk)

. This implies that b 6∈ C∗u(M,Vτ ).

Let sk = sM` (a · pk), where a · pk ∈ B(L2(M, τ)) means left multiplication by pk followed
by a. We have (1 − sk)a(p̂k) = (1 − sk)(a · pk)(p̂k) = 0 and, from the assumption on a,
τ(sk) ≤ λτ(pk). In the calculation below, (∗) is left multiplication by (1− sk) and (∗∗) (read
right-to-left) is right multiplication by qk, both contractive:

∥∥∥(b− a)
( p̂k√

τ(pk)

)∥∥∥
2

=
∥∥∥ q̂k√

τ(qk)
− a
( p̂k√

τ(pk)

)∥∥∥
2

(∗)
≥
∥∥∥(1− sk)

( q̂k√
τ(qk)

)∥∥∥
2

≥
∥∥∥ q̂k√

τ(qk)

∥∥∥
2
−
∥∥∥ ŝkqk√

τ(qk)

∥∥∥
2

(∗∗)
≥ 1−

∥∥∥ ŝk√
τ(qk)

∥∥∥
2

= 1−

√
τ(sk)

τ(qk)
≥ 1−

√
λτ(pk)

τ(qk)
→ 1. �

Remark 5.8. In the construction of support expansion C∗-algebras just described, the ex-
pansion we tolerate in operators a and projection maps ϕ is constrained by multiplication
by some constant, that is, a linear function. The definitions also make sense for other
functions. Given an increasing f : [0,∞] → [0,∞], we may widen Definition 5.4 and say
that a projection map ϕ : Pr(M) → Pr(M) is f -constrained if τ(ϕ(q)) ≤ f(τ(q)) for all
q ∈ Pr(M).
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To obtain the generalization of Theorem 5.5, we need to start with a nonempty collection
of functions F that is closed under sums and compositions. This entails that the operators
belonging to some Vϕ,ψ, where ϕ and ψ are each constrained by some member of F , will
comprise a *-algebra.

In the present paper the underlying F is always the collection of functions {fλ(x) =
λx}λ≥0, but other choices do in fact produce distinct quantum uniform Roe algebras. One
may, for instance, let F be the collection of functions obtained from f(x) =

√
x under

arbitrary repeated sums and compositions. The companion paper [BES24] studies many
aspects of this construction for abelian M and in particular analyzes the wild poset of
different quantum uniform Roe algebras arising from various F whenM is L∞(R) endowed
with the Lebesgue integral as trace.

5.2. Vector support expansion C*-algebras. Let us recall the two conditions in Defini-
tions 5.3 and 5.6 on operators a ∈ B(H), in the presence of a tracial von Neumann algebra
M⊂ B(H):

(4) τ(sM(aξ)), τ(sM(a∗ξ)) ≤ λ · τ(sM(ξ)), ∀ξ ∈ H.

(5) τ(sM` (aq)), τ(sM` (a∗q)) ≤ λ · τ(q), ∀q ∈ Pr(M).

We defined the associated vector support expansion C∗-algebra as the closure of those
a ∈ B(H) that satisfy (4) for some λ, while the support expansion C∗-algebra (which is a
quantum uniform Roe algebra by Theorem 5.5) is the closure of those elements that satisfy
(5) for some λ. In this subsection we prove that conditions (4) and (5) are equivalent when
M is abelian. In general they are inequivalent, and we also show that there are vector
support expansion C∗-algebras with respect to certain M ⊆ B(H) which are not quantum
uniform Roe algebras in any way, meaning that there is no quantum coarse structure on
M⊆ B(H) giving rise to this C∗-algebra.

Example 5.9. We present a simple example showing that an operator may satisfy (4) for
some λ but not satisfy (5) for the same λ. For that, let M = M2 act standardly as left
multiplication operators on HS2, the Hilbert space of 2×2 matrices with the Hilbert-Schmidt
norm. For any ξ ∈ HS2, sM(ξ) is left multiplication by the matrix projecting onto the range
of ξ, and its nonnormalized trace is equal to the dimension of this range. Let a ∈ B(HS2) take
( s t
u v ) to ( s t

u v )t = ( s ut v ). For every ξ ∈ HS2, τ(sM(Tξ)) = τ(sM(ξ)) because the transpose
map preserves rank (“row rank equals column rank”). Note also that a is self-adjoint:

〈ξt, η〉 = τ(η∗ξt) = τ(ξηt∗) = τ(ηt∗ξ) = 〈ξ, ηt〉.
Thus a satisfies (4) for λ = 1.

Let q ∈M be (left multiplication by) ( 1 0
0 0 ). Then aq(ξ) is a vector of the form ( s 0

t 0 ), and
sM` (aq) is the 2 × 2 identity matrix (we are looking for the least projection such that left
multiplication fixes all matrices of this form). Thus a does not satisfy (5) for λ = 1.

This example is not so bad, because a does satisfy (5) for λ = 2. Needing to double
λ is the worst that can happen for this M ⊂ B(H), so the vector support expansion C∗-
algebra still agrees with the support expansion C∗-algebra. In Section 5.2.2 we give an
infinite-dimensional version of this example, supplemented by additional analysis, showing
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that some vector support expansion C∗-algebras are not quantum uniform Roe algebras at
all.

5.2.1. The two notions of expansion agree when M is abelian.

Theorem 5.10. Let M⊂ B(H) be an abelian von Neumann algebra, and let τ be a faithful
normal semifinite trace on M. Then conditions (4) and (5) are equivalent for a ∈ B(H),
so that the vector support expansion C∗-algebra equals the support expansion C∗-algebra
C∗u(M,Vτ ).

Lemma 5.11. Let M ⊂ B(H) be an abelian von Neumann algebra and ξ1, . . . , ξn ∈ H.
Then there are c1 = 1, c2, . . . , cn ∈ R such that

n∨
j=1

sM(ξj) = sM

(
n∑
j=1

cjξj

)
.

Proof. For n = 1 there is nothing to show. Take n > 1, and assume we have proved the
lemma for n− 1. Given ξ1, . . . , ξn, apply the lemma to ξ1, . . . , ξn−1 to find c2, . . . , cn−1 with
∨n−1
j=1 s

M(ξj) = sM(
∑n−1

j=1 cjξj). For each c ∈ R let

pc =

[
n∨
j=1

sM(ξj)

]
− sM

[(
n−1∑
j=1

cjξj

)
+ cξn

]
.

We show that the pc are pairwise orthogonal. For simplicity rename
∑n−1

j=1 cjξj as η1 and
ξn as η2. We have

pc = (sM(η1) ∨ sM(η2))− sM(η1 + cη2)

so that pc(η1 + cη2) = 0. For c 6= c′ we compute

(pcpc′)(η1)+c(pcpc′)(η2) = (pcpc′)(η1+cη2) = 0 = (pcpc′)(η1+c′η2) = (pcpc′)(η1)+c′(pcpc′)(η2).

As c 6= c′, we must have (pcpc′)(η1) = (pcpc′)(η2) = 0. It follows that pcpc′ is perpendicular
to sM(η1) ∨ sM(η2), of which it is a subprojection. We conclude that pcpc′ = 0.

Thus {pc | c ∈ R} is an uncountable family of pairwise orthogonal projections. For each
j all but countably many pc annihilate ξj, so there must be a pc that annihilates all ξj and
then is perpendicular to the projection ∨nj=1s

M(ξj). But pc lies beneath ∨nj=1s
M(ξj) and so

must be zero. (To the conversant reader, we just used that cyclic projections are σ-finite,
and the join of countably many σ-finite projections is σ-finite.) The proof is completed by
letting cn be any c for which pc = 0. �

Note that the lemma is not true for generalM⊂ B(H): letH be a Hilbert space containing
linearly independent vectors ξ1, ξ2, and take M = B(H).

Proof of Theorem 5.10. First assume that a ∈ B(H) satisfies (5). Then for any ξ ∈ H,

λτ(sM(ξ)) ≥ τ(sM` (asM(ξ))) ≥ τ(sM(aξ)).

The first inequality is the assumption (5). For the second, note that (asM(ξ))(ξ) = aξ, so
aξ is in the range of asM(ξ) and is therefore fixed by sM` (asM(ξ)). The latter is a projection
in M and must therefore dominate sM(aξ), which is the smallest M-projection fixing aξ.
This shows that (4) holds (and commutativity of M is not needed).
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Next assume that a ∈ B(H) satisfies (4). For any projection q in M,

sM` (aq) =
∨
ξ∈H

sM(aqξ) =
∨
ξ∈qH

sM(aξ) = lim
finite F⊂qH

∨
ξ∈F

sM(aξ).

For the last equality, we used that an infinite join is the weak limit of the increasing net
of finite joins (the indices F are finite subsets of qH, ordered by reverse inclusion). By
normality of τ we have

τ(sM` (aq)) = sup
finite F⊂qH

τ

(∨
ξ∈F

sM(aξ)

)
.

Using Lemma 5.11 we can replace ∨ξ∈F sM(aξ) by theM-support of a linear combination of
the aξ, which is a single vector in qH:

τ(sM` (aq)) = sup
ξ∈qH

τ(sM(aξ)).

The desired conclusion follows by applying (4) to the term in the last supremum: for any
ξ ∈ qH we have

τ(sM(aξ)) ≤ λτ(sM(ξ)) ≤ λτ(q). �

5.2.2. A vector support expansion C∗-algebra that is not a quantum uniform Roe algebra. In
the proof of Theorem 5.10, we saw that (5) implies (4), and Example 5.9 shows that the
converse can fail. An infinite-dimensional version of this example, a in the proof below,
satisfies (5) for no λ, even though it satisfies (4) for λ = 1. This demonstrates that the sets
of constrained operators and vector constrained operators can differ.

Establishing that a vector support expansion C∗-algebra is not a quantum uniform Roe
algebra is more complicated, because closures are involved, and the proof requires extra steps
in order to handle approximations. Note that we are not merely distinguishing the vector
support expansion C∗-algebra from the support expansion C∗algebra; we are showing that
it is not any quantum uniform Roe algebra at all. The condition (5) plays no role here.

Theorem 5.12. LetM = B(`2) be in standard form, i.e., acting by left multiplication on the
Hilbert space HS of Hilbert-Schmidt operators on `2. The associated vector support expansion
C∗-algebra is not a quantum uniform Roe algebra on M⊂ B(HS).

Proof. We first repeat some observations from Example 5.9, but in the infinite-dimensional
setting. Any element of M is left multiplication by some `2-operator b, denoted L(b);
similarly elements ofM′ are right multiplications R(b). Given a Hilbert-Schmidt operator c
on `2, we write ĉ for the associated vector in HS. Then sM(ĉ) ∈M is left multiplication by

the projection onto the range of a. Let a ∈ B(HS) be the transpose map ĉ 7→ ĉt, which is a

self-adjoint isometry on HS. Again sM(a(ĉ)) = sM(ĉt) has the same (possibly infinite) trace
as sM(ĉ), because the transpose operation preserves rank. Thus a satisfies (4) for λ = 1.

Denote by A the vector support expansion C∗-algebra, which is the norm closure of the
vector constrained operators. Suppose towards a contradiction that A is a quantum uniform
Roe algebra, obtained as the norm closure of some algebraic quantum uniform Roe algebra
A0. Since a ∈ A, there is a1 ∈ A0 with ‖a− a1‖ < 1

2
. Now A0 is the union of weak*-closed

M′–M′ bimodules, so any element of spanw
∗M′a1M′ also belongs to A0. The strategy of
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the proof is to build an element a2 ∈ A0 and show that it is not a limit of vector constrained
operators.

Let I1 = {1}, I2 = {2, 3}, I3 = {4, 5, 6}, etc. Define a2 ∈ B(HS) by

a2 = SOT-
∑
n∈N

1√
n

∑
i∈In

R(e1i)a1R(eni)

= R(e11)a1R(e11) +
1√
2

[R(e12)a1R(e22) +R(e13)a1R(e23)]

+
1√
3

[R(e14)a1R(e34) +R(e15)a1R(e35) +R(e16)a1R(e36)] + . . .

Each term of the form R(e1i)a1R(eni) has range inside the ith column of HS. Each sum∑
i∈In R(e1i)a1R(eni) is the sum of n operators with norm ≤ ‖a1‖ and pairwise orthogonal

ranges and thus has norm ≤
√
n‖a1‖. This entails that 1√

n

∑
i∈In R(e1i)a1R(eni) is an oper-

ator of norm ≤ ‖a1‖ that annihilates vectors supported off the nth column of HS and has
range inside the columns of HS indexed by In. For different n these have orthogonal left and
right supports; it follows that the partial sums converge strongly to an operator a2 of norm
≤ ‖a1‖. By the remark in the previous paragraph, we have a2 ∈ A0.

For convenience denote

a3 = SOT-
∑
n∈N

1√
n

∑
i∈In

R(e1i)aR(eni),

so that

‖a2 − a3‖ =

∥∥∥∥∥SOT-
∑
n∈N

1√
n

∑
i∈In

R(e1i)(a1 − a)R(eni)

∥∥∥∥∥ ≤ ‖a1 − a‖ <
1

2

by the same argument as above. The action of a3 is nice:
t11 t12 t13 · · ·
...

. . .

 7→

t11 0 0 · · ·
0 t12√

2
0 · · ·

0 0 t12√
2
· · ·

...
. . .

 .

To finish the proof we demonstrate that any d ∈ B(HS) with ‖d− a2‖ < .1 cannot satisfy
(4) for any λ > 0. Suppose there are such d and λ. Pick n > 2λ. By (4) at the vector ê1n,

Tr(sM(d(ê1n))) ≤ λTr(sM(ê1n)) = λTr(e11) = λ.

Let q be the projection in B(`2) such that L(q) = sM(d(ê1n)), so that q has rank ≤ λ. As
L(q⊥)(d(ê1n)) = 0, we have

‖L(q⊥)(a3(ê1n))‖HS = ‖L(q⊥)((d− a3)(ê1n))‖HS ≤ ‖(d− a3)(ê1n)‖HS

≤ ‖d− a3‖ ≤ ‖d− a2‖+ ‖a2 − a3‖ < .1 + .5 = .6.

On the other hand, a3(ê1n) is 1/
√
n times a projection r of rank n. Since n > 2λ, Kaplansky’s

law for projections gives

r−r∧q⊥ ∼ r∨q⊥−q⊥ ≤ q ⇒ Tr(r)−Tr(r∧q⊥) ≤ Tr(q) ⇒ n−Tr(r∧q⊥) ≤ λ <
n

2
,
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meaning r ∧ q⊥ has rank at least n/2. Finally

‖L(q⊥)(a3(ê1n))‖HS =

∥∥∥∥∥
(
q̂⊥r√
n

)∥∥∥∥∥
HS

≥

∥∥∥∥∥L(r ∧ q⊥)

(
q̂⊥r√
n

)∥∥∥∥∥
HS

≥

∥∥∥∥∥ r̂ ∧ q⊥√
n

∥∥∥∥∥
HS

≥ 1√
2
,

which violates the previous inequality. �

Remark 5.13. We know from Section 4.1.1 that the quantum uniform Roe algebras for the left
multiplication representation B(`2) ⊂ B(HS) ' B(`2 ⊗ `2) are given by amplifying quantum
uniform Roe algebras for B(`2) ⊂ B(`2), and we know from Section 4.2.3 that the latter
can be any C∗-algebra. So the point of Theorem 5.12 is that the vector support expansion
C∗-algebra is not of the form “(C∗-algebra)⊗B(`2)”, where the two factors are acting by left
and right multiplication on HS.

The mechanism of the proof makes sense from this perspective too: if the vector support
expanstion C∗-algebra were of this form inside B(HS), it would be closed under strong limits
and composition with right multiplications from B(`2), which is shown false.

Even though vector support expansion C∗-algebras do not always arise from a quantum
coarse structure, we believe they are natural objects and interesting for study in their own
right.

5.3. Rigidity and spatial implementation of *-isomorphisms. A “rigidity” theorem
for uniform Roe algebras says that an equivalence at the operator algebra level (*-isomorphism
or something weaker) implies coarse equivalence of metric/coarse spaces. See for instance
[BBF+24]. In this short subsection we notice that a key step in proving such results is true
in a specific quantum situation (but not generally).

It is a basic fact of C∗-theory that any *-isomorphism between represented C∗-algebras
containing the compact operators must be spatial, i.e., of the form Ad(u) for some unitary
u [Arv76, Theorem 1.3.4 and Corollaries to Theorem 1.4.4]. Classical uniform Roe algebras
of connected coarse spaces (see Section 4.1.3) always contain the compact operators, and
building on this, it was shown in [BF21, Lemma 3.1] that all *-isomorphisms between classical
uniform Roe algebras are spatial. Spatiality is useful for proving rigidity-type results because
the implementing unitary provides a foothold for building maps between the underlying sets.

But isomorphisms between quantum uniform Roe algebras do not need to be spatially
implemented, even when they arise from quantum coarse structures over the same represented
von Neumann algebra. For instance, the algebras{(

a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b

)
| a, b ∈ C

}
,

{(
a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 b

)
| a, b ∈ C

}
are quantum uniform Roe algebras for M = M4(C) ⊂ B(C4) (Section 4.2.2). They are
*-isomorphic to C⊕ C and each other, but they are not spatially isomorphic.

We may still conclude spatiality for *-isomorphisms between quantum uniform Roe al-
gebras containing the compacts (as the algebras above fail to do). The next result, which
is about support expansion C∗-algebras, points out a specific case of this. Recall that a
II1-factor M with trace τ is said to have property Γ if for all ε > 0 and all x1, . . . , xn ∈ M
there is a unitary u ∈M with τ(u) = 0 and ‖xiu− uxi‖2 < ε for all i ∈ {1. . . . , n}.
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Proposition 5.14. Let (M, τ) ⊂ B(L2(M, τ)) and (N , τ ′) ⊂ B(L2(N , τ ′)) be II1-factors
that do not have property Γ. Every *-isomorphism between the support expansion C∗-algebras
C∗u(M,Vτ ) and C∗u(N ,Vτ ′) is spatially implemented.

Proof. AsM does not have property Γ, [Con76, Theorem 2.1] says thatK(L2(M)) ⊂ C∗(M∪
M′). But the latter is contained in C∗u(M,Vτ ) by Theorem 5.7(1). Similarly K(L2(N )) ⊂
C∗u(N ,Vτ ′), so by the preceding remarks all isomorphisms between these algebras are spatial.

�

Developing rigidity for quantum uniform Roe algebras would be an interesting direction
for future research.

6. Morphisms in the quantum category

The current section discusses morphisms between quantum coarse spaces. We consider in-
dividual morphisms, various equivalences, and a notion of subspace, and we prove additional
results in case the quantum coarse space is metrizable. In Section 6.4 we quantize the con-
cept of asymptotic dimension and show that it is stable under quantum coarse embeddings
(Theorem 6.31).

The next terminology was introduced in [Kor11] (see also [CS23]):

Definition 6.1. A unital weak∗-continuous ∗-homomorphism ϕ : M → N between von
Neumann algebras is called a quantum function.

Quantum functions are the quantum versions of ordinary functions X → Y . Indeed,
given sets X and Y , any map f : X → Y canonically induces a quantum function ϕf :
`∞(Y ) → `∞(X) by letting ϕf (g) = g ◦ f for all g ∈ `∞. Moreover, any quantum function
ϕ : `∞(Y )→ `∞(X) induces a map fϕ : X → Y by letting f(x) = y if χ{x} ≤ ϕ(χ{y}). These
two constructions are clearly inverse to each other.

Quantum functions behave well with respect to pullbacks of intrinsic quantum relations.
Precisely, given intrinsic quantum coarse spaces (M,R) and (N ,Q), every such ϕ :M→N
induces a canonical map ϕ∗ : IQRel(N )→ IQRel(M) by letting

ϕ∗(Q) =
{

(p, q) ∈ Pr(M⊗̄B(`2))2 :
(
(ϕ⊗ 1)(p), (ϕ⊗ 1)(q)

)
∈ Q

}
= (ϕ⊗ 1)−1(Q)

for all Q ∈ Q (see [Wea12, Proposition 2.25] for a proof that this map is well-defined).
The following is the quantum version of coarse maps.6

Definition 6.2. Let (M,R) and (N ,Q) be intrinsic quantum coarse spaces. We call a
quantum function ϕ : M → N quantum coarse if ϕ∗[Q] ⊂ R. If (M ⊂ B(H),V ) and
(N ⊂ B(K),U ) are quantum coarse spaces, we define quantum coarse maps considering the
intrinsic quantum coarse spaces R = RV and Q = RU .

We start by showing that quantum coarseness is equivalent to coarseness in the classical
setting:

Proposition 6.3. Let (X, E) and (Y,F) be coarse spaces and consider `∞(X) and `∞(Y )
endowed with the quantum coarse structures induced by E and F , respectively. A map f :
X → Y is coarse if and only if ϕf : `∞(Y )→ `∞(X) is quantum coarse.

6 Recall, if (X, E) and (Y,F) are coarse spaces, a map f : X → Y is coarse if (f × f)[E ] ⊂ F .
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Proof. Let E ⊂ X2 and let RE = RVE , i.e., (p, q) ∈ RE if and only if ∃(x, y) ∈ E so that
p(exy ⊗ 1)q 6= 0. Then we have that

ϕ∗f (RE) = {(r, s) : ∃(x, y) ∈ E, [(ϕf ⊗ 1)(r)](exy ⊗ 1)[(ϕf ⊗ 1)(s)] 6= 0}
= {(r, s) : ∃(x, y) ∈ E, r(ef(x)f(y) ⊗ 1)s 6= 0}
= Rf×f(E)

(the second equality above holds since ϕf is weak∗ continuous, and r, s are weak* limits of
linear combinations of simple tensors). The result then follows from Proposition 2.2 and
Theorem 2.4. �

If f : X → Y is an injective coarse map between coarse spaces (X, E) and (Y,F), then the
isometric embedding uf : `2(X) → `2(Y ) given by uf (δx) = δf(x), for all x ∈ Y , induces an
embedding Ad(uf ) : C∗u(X) → C∗u(Y ) (see [BFV20, Theorem 1.2] for details). Moreover, if
f is a bijective coarse equivalence, this embedding is an isomorphism (see [BF21, Theorem
8.1] for details). For this reason, we are interested in understanding the quantum versions of
“injective coarse maps” and “bijective coarse equivalences”. As f : X → Y is injective if and
only if ϕf : `∞(Y ) → `∞(X) is surjective, in the quantum world the notion of an injective
coarse map f : X → Y is replaced by a surjective quantum coarse function M → N .
Similarly, a bijective coarse equivalence X → Y becomes an isomorphism ϕ :M→N with
both ϕ and ϕ−1 being quantum coarse.

Definition 6.4. Let (M ⊂ B(HM),V ) and (N ⊂ B(HN ),U ) be quantum coarse spaces.
An isomorphism ϕ :M→N is called a quantum coarse isomorphism if both ϕ and ϕ−1 are
quantum coarse functions.

A quantum coarse isomorphism is just a change of representation for a single intrinsic
quantum coarse space, so the next theorem follows from Sections 4.1.1 and 4.1.2.

Theorem 6.5. Let ϕ : M → N be a quantum coarse isomorphism between the quantum
coarse spaces (M⊂ B(HM),V ) and (N ⊂ B(HN ),U ).

1. If ϕ is spatially implemented, then it induces a spatial isomorphism C∗u(M,V ) '
C∗u(N ,U ).

2. In any case there is a spatially implemented isomorphism

C∗u(M,V )⊗̄B(K) = C∗u(M⊗ 1K ,V ⊗̄B(K)) ' C∗u(N ⊗ 1K ,U ⊗̄B(K)) = C∗u(N ,U )⊗̄B(K)

for any Hilbert space K with dimK ≥ max{ℵ0, dimHM, dimHN}.

For a simple example of the difference between the two parts of Theorem 6.5, let M =
N = C, which carries a unique intrinsic quantum coarse structure. The identity ϕ : M→N
is a quantum coarse isomorphism. If we represent M in B(C) and N in B(C2) as multiples
of the identity, their quantum uniform Roe algebras are C and B(C2), respectively, which
are not (spatially) isomorphic until after amplification.

We now prove the quantum version of the discrete result about embeddability.

Theorem 6.6. Let (M,V ) and (N ,U ) be quantum coarse spaces and let ϕ :M→N be a
spatially implemented surjective quantum function. If ϕ is quantum coarse, then C∗u(N ,U )
spatially embeds into C∗u(M,V ).
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Proof. Let R = RV and Q = RU . As ϕ is a quantum function, there is a central projection
r ∈ M such that ker(ϕ) = (1 − r)M. Hence, as ϕ is spatially implemented, there is a
surjective isometry u : HN → Im(r) such that ϕ(a) = u∗au for all a ∈M. Let ψ : B(HN )→
B(HM) be the spatial embedding given by ψ(b) = ubu∗ for all b ∈ B(HN ).

Claim 6.7. Let Q ∈ Q. Then ψ(b) ∈ Vϕ∗(Q) for all b ∈ VQ.

Proof. Fix b ∈ VQ and projections p, q ∈M⊗̄B(`2) with (p, q) 6∈ ϕ∗(Q). So, ((ϕ⊗1)(p), (ϕ⊗
1)(q)) 6∈ Q and we have

[(ϕ⊗ 1)(p)](b⊗ 1)[(ϕ⊗ 1)(q)] = 0.

Therefore, as ϕ is weak∗-continuous, approximating p and q by elements in M⊗B(`2), we
have that

0 = (u∗ ⊗ 1)p(u⊗ 1)(b⊗ 1)(u∗ ⊗ 1)q(u⊗ 1)

and then p(ψ(b)⊗ 1)q = 0. The arbitrariness of p and q implies that ψ(b) ∈ Vϕ∗(Q). �

The previous claim shows that ψ takes
⋃
Q∈Q VQ into

⋃
Q∈Q Vϕ∗(Q). As ϕ is quantum

coarse, ϕ∗(Q) ∈ R for all Q ∈ Q, so ψ takes
⋃
Q∈Q VQ into

⋃
R∈R VR. Hence, ψ � C∗u(N ,U )

is an embedding of C∗u(N ,U ) into C∗u(M,V ). �

Although a quantum coarse isomorphismM→N induces an isomorphism between quan-
tum uniform Roe algebras, this is not the quantum version of coarse equivalence, since coarse
equivalences do not need to be bijective. In order to deal with a “nonbijective quantum coarse
isomorphism”, we must first introduce the notion of closeness in the quantum setting. Re-
call, if (Y,F) is a coarse space and X is a set, then maps f, g : X → Y are close if there is
F ∈ F so that (f(x), f(y)) ∈ F for all x ∈ X.

Definition 6.8. LetM and N be von Neumann algebras and let R be an intrinsic quantum
coarse structure onM. Quantum functions ϕ, ψ :M→N are called quantum close if there
is R ∈ R so that (p, q) ∈ R for all p, q ∈ Pr(M⊗̄B(`2)) with (ϕ⊗ 1)(p)(ψ ⊗ 1)(q) 6= 0.

Proposition 6.9. Let X be a set and (Y,F) be a coarse space, and consider `∞(Y ) endowed
with the quantum coarse structure induced by F . Maps f, g : X → Y are close if and only if
ϕf , ψg : `∞(Y )→ `∞(X) are quantum close.

Proof. Suppose ϕf and ϕg are quantum close, and let F ∈ F be such that RF witnesses that
those maps are quantum close. Then, for each x ∈ X, we have

[(ϕf ⊗ 1)(ef(x)f(x) ⊗ 1)][(ϕg ⊗ 1)(eg(x)g(x) ⊗ 1)] = exx ⊗ 1,

which implies that ((ef(x)f(x)⊗ 1), (eg(x)g(x)⊗ 1)) ∈ RF . By the definition of RE, this implies
that (f(x), g(x)) ∈ F .

Suppose now that f and g are close, and say F ∈ F is so that (f(x), g(x)) ∈ F for
all x ∈ X. Let RF be the intrinsic quantum relation on `∞(Y ) given by F . If p, q ∈
Pr(`∞(Y )⊗̄B(`2)) are such that [(ϕf ⊗ 1)(p)][(ϕg ⊗ 1)(q)] 6= 0, pick x ∈ X so that (ϕf ⊗
1)(p)(exx⊗ 1)(ϕg ⊗ 1)(q) 6= 0. Then, as ϕf and ϕg are weak∗-continuous, we must have that
p(ef(x)g(x) ⊗ 1)q 6= 0, i.e., (p, q) ∈ RF . �

We now introduce the quantum version of coarse equivalence:
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Definition 6.10. Let (M,V ) and (N ,U ) be quantum coarse spaces and ϕ : M→ N be
a quantum function. We say that ϕ is a quantum coarse equivalence if ϕ is quantum coarse
and there is a quantum coarse map ψ : N → M so that ψ ◦ ϕ and ϕ ◦ ψ are quantum
close to the identities ofM and N , respectively. In this case (M,V ) and (N ,U ) are called
quantum coarsely equivalent and ψ is a quantum coarse inverse of ϕ.

Clearly, if ϕ : M → N is a quantum coarse isomorphism, them ϕ is a quantum coarse
equivalence. We return to quantum equivalences in Subsections 6.1 and 6.4.

6.1. Quantum coarse subspaces. Besides equivalences between quantum coarse spaces,
we want to be able to talk about embeddings. For that, we must first deal with quantum
subspaces. IfM is a von Neumann algebra and r ∈M is a central projection, then N = rM
can be be seen as a von Neumann algebra in B(K), where K = Im(r). If V is a quantum
coarse structure on M, we let

VN = {rVr : V ∈ V }.7

Considering VN as a family of quantum relations on N ⊂ B(K), VN is a quantum coarse
structure on N and we call (N ,VN ) a quantum coarse subspace of (M,V ) (cf. [KW12,
Definition 2.35]). We denote the intrinsic quantum coarse structure RVN on N by RN .

We now show that quantum coarseness is “independent of subspaces”. In the classical
case, a map f : X → Y between coarse spaces is coarse if and only if f : X → Z is coarse
for (any) coarse space Z with Y ⊂ Z. The next two propositions show that quantum coarse
maps satisfy the same property.

Proposition 6.11. Let (M,V ) be a quantum coarse space and let r be a central projection
in M. The map π : a ∈M 7→ ra ∈ rM is quantum coarse.

Proof. Let N = rM. Say Q ∈ RN . So there is V ∈ V so that, thinking of rVr as being in
VN , Q = RrVr. Hence,

π∗(Q) = {(p, q) | ((π ⊗ 1)(p), (π ⊗ 1)(q)) ∈ RrVr}
= {(p, q) | ∃v ∈ V , [(π ⊗ 1)(p)(v ⊗ 1)][(π ⊗ 1)(q)] 6= 0}
= {(p, q) | ∃v ∈ V , (p)(rvr ⊗ 1)(q) 6= 0}
= {(p, q) | ∃v ∈ rVr, (p)(v ⊗ 1)(q) 6= 0}
= RrVr.

So, π∗(Q) = RrVr ∈ RV , i.e., π is quantum coarse. �

If ϕ : M → N is a quantum function between von Neumann algebras, then ker(ϕ)
is a weak∗-closed ideal. Hence, there is a central projection r ∈ M such that ker(ϕ) =
(1 − r)M. If V is a quantum coarse structure on M, then we consider M/ ker(ϕ) as a
quantum coarse space endowed with the quantum coarse structure given by the canonical
isomorphism M/ ker(ϕ) ∼= rM.

Proposition 6.12. Let (M,V ) and (N ,U ) be quantum coarse spaces. Let ϕ :M→N be
a quantum function and ψ :M/ ker(ϕ)→ N be the map induced by ϕ. Then ϕ is quantum
coarse if and only if ψ is quantum coarse.

7As the elements in V are bimodules over M′, we have that VN ⊂ V .
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Proof. Let r be a central projection in M so that (1 − r)M = ker(ϕ), so we identify
M/ ker(ϕ) with rM. Let π :M→ rM be the map given by π(a) = ra for all a ∈M; so π
is quantum coarse (Proposition 6.11) and ϕ = ψ◦π. In particular, if ψ is quantum coarse, so
is ϕ. Moreover, if Q ∈ IQRel(N ), then ψ∗(Q) ⊂ ϕ∗(Q). Therefore, if ϕ is quantum coarse,
so is ψ. �

In the discrete setting, a map f : X → Y is a coarse embedding if f : X → f(X) is a
coarse equivalence. We then make the following definition:

Definition 6.13. Let (M,V ) and (N ,U ) be quantum coarse spaces. A quantum function
ϕ : M → N is called a quantum coarse embedding of (N ,U ) into (M,V ) if the induced
map ψ :M/ ker(ϕ)→ N is a quantum coarse equivalence.

6.2. Expanding maps and coboundedness. Notoriously, there are two equivalent ways
of defining equivalences between coarse spaces: (1) a coarse map f : X → Y is a coarse
equivalence if there is a coarse map g : Y → X so that g ◦ f and f ◦ g are close to IdX
and IdY , respectively, and (2) a coarse map is a coarse equivalence if it is expanding and
cobounded.8 The first one, being clearly a symmetric property, is much more natural and
therefore it was the one quantized in the previous section.

As the existence of quantum functions between von Neumann algebras is not immediate,
the reader should not expect that quantum coarse equivalence should be equivalent to the
existence of a single quantum coarse functionM→N which is also “quantum cobounded”
and “quantum expanding” (see Remark 6.22). However, as we see in this section, there are
still natural generalizations of expansion and coboundedness which are indeed implied by
coarse equivalences (see Theorem 6.21). Moreover, as we see in Theorem 6.23, those concepts
are related to embeddings of quantum uniform Roe algebras into hereditary subalgebras.

Definition 6.14. Let (M,R) and (N ,Q) be intrinsic quantum coarse spaces. We call a
quantum function ϕ :M→N quantum expanding if (ϕ∗)−1[R] ⊂ Q. If (M,V ) and (N ,U )
are quantum coarse spaces, we define quantum expanding maps by considering the intrinsic
quantum relations R = RV and Q = RU .

As usual, we start by noticing that this quantization of expanding functions indeed coin-
cides with the usual notion in the classical setting.

Proposition 6.15. Let (X, E) and (Y,F) be coarse spaces and consider `∞(X) and `∞(Y )
endowed with the quantum coarse structures induced by E and F , respectively. A map f :
X → Y is expanding if and only if ϕf : `∞(Y )→ `∞(X) is quantum expanding.

Proof. Let f × f : P(X2) → P(Y 2) be the map given by f × f(E) = (f × f)[E] for all

E ∈ P(X2), and notice that f is expanding if and only if f × f−1
[E ] ⊂ F . Given F ⊂ Y 2,

8A map f : X → Y between coarse spaces (X, E) and (Y,F) is expanding if (f × f)−1[F ] ⊂ E and
cobounded if there is F ∈ F so that for all y ∈ Y there is x ∈ X with (y, f(x)) ∈ F .
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let RF = RVF and notice that, as ϕf is weak∗-continuous, we have that

Q ∈ (ϕ∗f )
−1(RF ) ⇐⇒ ∃E ∈ P(X2) with Q = RE and ϕ∗f (RE) = RF

⇐⇒ ∃E ∈ P(X2) with Q = RE and

{(r, s) : ∃(x, y) ∈ E, r(ef(x)f(y) ⊗ 1)s 6= 0}
= {(r, s) : ∃(z, w) ∈ F, r(ezw ⊗ 1)s 6= 0}

⇐⇒ ∃E ∈ P(X2) with Q = RE and f × f(E) = F

⇐⇒ Q ∈ {RE : E ∈ f × f−1
[{F}]}.

So (ϕ∗f )
−1(RF ) = {RE : E ∈ f × f−1

[{F}]} for all F ⊂ Y 2 and the result follows. �

If X, Y , and Z are coarse spaces and Y ⊂ Z, then a map f : X → Y is expanding if and
only if f : X → Z is expanding. The goal of the next two propositions is to show that the
same holds for quantum expansion.

Proposition 6.16. Let (M,V ) be a quantum coarse space and let r be a central projection
in M⊂ B(H). The map π : a ∈M 7→ ra ∈ rM is quantum expanding.

Proof. Say R ∈ R and pick Q ∈ IQRel(rM) so that ϕ∗(Q) = R. By Theorem 2.4, there are
quantum relations V and U onM so thatR = RV and, thinking of rUr as a quantum relation
on rM, Q = RrUr. Unfolding definitions, it is straightforward to check that, considering rVr
as a subspace of B(rH), we have Q ⊂ RrVr. So Q ∈ RrM, and π is quantum expanding. �

Proposition 6.17. Let (M,V ) and (N ,U ) be quantum coarse spaces. Let ϕ : M → N
be a quantum function and ψ :M/ ker(ϕ)→ N the map induced by ϕ. Then ϕ is quantum
expanding if and only if ψ is quantum expanding.

Proof. Let r be a central projection inM so that (1−r)M = ker(ϕ), and identifyM/ ker(ϕ)
with rM. For simplicity, let R = RV , Q = RU , and R ′ = RrM. Let π :M→ rM be the
map given by π(a) = ra for all a ∈M, so π is expanding (Proposition 6.16) and ϕ = ψ ◦ π.

As ϕ = ψ ◦ π, if ψ is quantum expanding, so is ϕ. Suppose now that ϕ is quantum
expanding. Let R ∈ R ′ and pick Q ∈ IQRel(N ) with ψ∗(Q) = R. By Theorem 2.4, there
is V ∈ V so that, thinking of rVr as a quantum relation on rM, we have R = RrVr. Let
V ′ = rVr be considered as a subspace of B(HM). Then, as ψ∗(Q) = RrVr, we have that

ϕ∗(Q) = {(p, q) : ([(ψ ⊗ 1)(r ⊗ 1)](p), [(ψ ⊗ 1)(r ⊗ 1)](q)) ∈ Q}
= {(p, q) : ((r ⊗ 1)(p), (r ⊗ 1)(q)) ∈ ψ∗(Q)}
= {(p, q) : ∃a ∈ V , p(rar ⊗ 1)q 6= 0}
= RV ′ .

As ϕ is quantum expanding and V ′ ∈ V , it follows that Q ∈ Q. So, ψ is quantum expanding.
�

Definition 6.18. Let (M,R) be an intrinsic quantum coarse space and N be a von Neu-
mann algebra. A quantum map ϕ : M → N is called quantum cobounded if and only if
there is R ∈ R so that for all p ∈ Pr∗(M⊗̄B(`2)) there is q ∈ Pr(M⊗̄B(`2)) such that
(p, (r ⊗ 1)q) ∈ R, where r is the central projection in M so that ker(ϕ) = (1− r)M.

The proof of the next proposition is straightforward, so we omit it.
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Proposition 6.19. Let X be a set, (Y,F) be a coarse space and consider `∞(Y ) endowed
with the quantum coarse structure induced by F . A map f : X → Y is cobounded if and only
if ϕf : `∞(Y )→ `∞(X) is quantum cobounded. �

Proposition 6.20. Let (M,V ) and (N ,U ) be quantum coarse spaces, and ϕ : M → N
and ψ : N →M be quantum functions.

1. If ψ ◦ ϕ is quantum close to the identity M→M, then ϕ is quantum cobounded.
2. If ϕ ◦ ψ is quantum close to the identity N → N and ψ is quantum coarse, then ϕ is

quantum expanding.

Proof. Let R = RV and Q = RU .
(1) Fix R ∈ R witnessing that ψ ◦ ϕ is quantum close to the identity M → M. Let

r ∈ M be the central projection so that ker(ϕ) = (1 − r)M and fix a nonzero projection
p ∈M⊗̄B(`2). Let

q0 = 1HN⊗`2 −
∨
{q′ ∈ Pr(N⊗̄B(`2)) : p[(ψ ⊗ 1)(q′)] = 0};

so q0 ∈ N⊗̄B(`2) and p ≤ (ψ ⊗ 1)(q0). Similarly, let

p0 = 1HM⊗`2 −
∨
{p′ ∈ Pr(M⊗̄B(`2)) : q0[(ϕ⊗ 1)(p′)] = 0}.

So p0 ∈ M⊗̄B(`2) and q0 ≤ (ϕ ⊗ 1)(p0) = [(ϕ ⊗ 1)(r ⊗ 1)](p0). Therefore, we have that
(ψ ⊗ 1)(q0) ≤ [(ψ ⊗ 1)(ϕ⊗ 1)(r ⊗ 1)](p0) and, as p ≤ (ψ ⊗ 1)(q0), we conclude that

p[(ψ ⊗ 1)(ϕ⊗ 1)(r ⊗ 1)]p0 6= 0.

By our choice of R, it must follow that (p, (r ⊗ 1)p0) ∈ R. So ϕ is cobounded.
(2) Fix Q ∈ Q witnessing that ϕ ◦ ψ is quantum close to the identity N → N . Let
R ∈ R and pick Q′ ∈ (ϕ∗)−1[{R}]. Let us show that Q′ ⊂ Q ◦ ψ∗(R) ◦ Q. For that, pick
(p, q) ∈ Q′ and let r, s ∈ Pr(M⊗̄B(`2)) be so that (p, r) 6∈ Q and (s, q) 6∈ Q. Let us show
that (r⊥, s⊥) ∈ ψ∗(R). Indeed, by our choice of Q, the assumptions on r and s imply that
p(ϕ ⊗ 1)(ψ ⊗ 1)(r) = 0 and q(ϕ ⊗ 1)(ψ ⊗ 1)s = 0. Therefore, as (p, q) ∈ Q′, we must have
that (

(ϕ⊗ 1)(ψ ⊗ 1)(r⊥), (ϕ⊗ 1)(ψ ⊗ 1)(s⊥)
)
∈ Q′.

As ϕ∗(Q′) = R, this implies that ((ψ⊗ 1)(r⊥), (ψ⊗ 1)(s⊥)) ∈ R; which in turn implies that
(r⊥, s⊥) ∈ ψ∗(R). The arbitrariness of r and s shows that (p, q) ∈ Q◦ψ∗(R)◦Q. Therefore,
as ψ is quantum coarse, and as quantum coarse structures are closed under subrelations, this
implies that Q′ ∈ Q. So ϕ is quantum expanding. �

We can now conclude that quantum coarse equivalence implies coboundedness and expan-
sion, as promised.

Theorem 6.21. Every quantum coarse embedding is quantum expanding and every quantum
coarse equivalence is quantum expanding and quantum cobounded.

Proof. If ϕ : M → N is a quantum coarse equivalence, then the result follows straight-
forwardly from Proposition 6.20. If ϕ is a quantum coarse embedding, then, by definition,
ψ :M/ ker(ϕ) → N is a quantum coarse equivalence and therefore, by Proposition 6.20, it
is quantum expanding. By Proposition 6.17, ϕ is also quantum expanding. �
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Remark 6.22 (On the backwards direction of Theorem 6.21). In the beginning of this sub-
section, we mentioned that the reader should have no hope that a quantum coarse map
M → N which is also quantum expanding and quantum cobounded should be a quantum
coarse equivalence. Indeed, this can be easily seen since the inclusion C→ B(`2) is a quantum
function and, endowing C and B(`2) with their maximal intrinsic quantum coarse structures,
i.e., RC = IQRel(C) and RB(`2) = IQRel(B(`2)), it is clear that the inclusion C → B(`2)
becomes quantum coarse, quantum expanding, and quantum cobounded. However, there is
no quantum function B(`2)→ C.

We can however say that every surjective quantum coarse and quantum expanding map
is a quantum embedding, and that every bijective quantum coarse and quantum expanding
map is a quantum equivalence. Indeed, say ϕ :M→N is a surjective quantum coarse and
quantum expanding map, then the induced map ψ : M/ ker(ϕ) → N is an isomorphism
which, by Propositions 6.12 and 6.17, is also quantum coarse and quantum expanding.
Therefore, ψ−1 must be quantum coarse, so ψ is a quantum coarse isomorphism, i.e., ϕ is a
quantum coarse embedding.

Theorem 6.23. Let (M,V ) and (N ,U ) be quantum coarse spaces and let ϕ :M→N be
a surjective quantum function which is quantum coarse and quantum expanding.

1. If ϕ is spatially implemented, then C∗u(N ,U ) embeds into a hereditary subalgebra of
C∗u(M,V ).

2. There is a Hilbert space K with dens(K) ≤ {ℵ0, dens(HN )} so that C∗u(N ,U ) embeds
into a hereditary subalgebra of C∗u(M⊗ 1K ,V ⊗̄B(K)).

Proof. (1) Let r ∈M be a central projection with ker(ϕ) = (1− r)M. By Remark 6.22, the
induced map ψ : rM→N is a spatially implemented quantum coarse isomorphism. Hence,
by Theorem 6.5(1), C∗u(N ,U ) is spatially isomorphic to C∗u(rM, rV r) ' rC∗u(M,V )r.

(2) This item follows analogously, using Theorem 6.5(2) and again reading the dimension
estimate out of the proof of ([Tak02, Theorem IV.5.5 and Corollary IV.5.6]). �

6.3. The metric case and quantum moduli. For metric spaces (X, d) and (Y, ∂), coarse
maps are often defined in terms of the modulus of uniform continuity. Recall, if f : X → Y ,
then its modulus of uniform continuity is given by

ωf (t) = sup{∂(f(x), f(y)) : d(x, y) ≤ t}, for all t ≥ 0.

One can easily see that f is coarse if and only if ωf (t) <∞ for all t ≥ 0. Equivalently, if

ω̃f (t) = inf{d(x, y) : d(f(x), f(y)) ≥ t},
then f is coarse if and only if limt→∞ ω̃(t) =∞ (see [CS23, Lemma 3.1]). We now see that,
for quantum coarse metric spaces, our definition of quantum coarseness has an analogous
characterization in terms of a modulus.

We start recalling the definition of distance between projections introduced in [KW12,
Definition 2.6]:

Definition 6.24. Let (M,V = (Vt)t≥0) be a quantum metric space and let p, q ∈ Pr(M⊗̄B(`2)).
The V-distance between p and q is defined by

dV(p, q) = inf{t ∈ [0,∞) : ∃a ∈ Vt, p(a⊗ 1)q 6= 0}
(here we use the convention that the infimum of an empty set is ∞).
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Our notion of quantum coarseness can be expressed as follows for the metric case (see
Remark 6.26):

Proposition 6.25. Let (M,V) and (N ,U) be quantum metric spaces and consider M and
N as quantum coarse spaces endowed with V = VV and U = VU, respectively. The following
are equivalent for a quantum function ϕ :M→N :

1. The map ϕ is quantum coarse.
2. There is ω : [0,∞)→ [0,∞) with limt→∞ ω(t) =∞ such that

ω(dV(p, q)) ≤ dU
(
(ϕ⊗ 1)(p), (ϕ⊗ 1)(q)

)
for all p, q ∈ Pr(M⊗̄B(`2)).

3. We have limt→∞ ω̃ϕ(t) =∞, where

ω̃ϕ(t) = inf{dU((ϕ⊗ 1)(p), (ϕ⊗ 1)(q)) : dV(p, q) ≥ t}

and p and q range over Pr(M⊗̄B(`2)).

Proof. Let V = (Vt)t≥0, U = (Ut)t≥0, and for each t ≥ 0, let Rt = RVt and Qt = RUt .
The equivalence (2) ⇐⇒ (3) is completely straightforward. So we only show that (1)
⇐⇒ (3). For that, notice first that ϕ is coarse if and only if for all t > 0 there is t′ > 0 so
that ϕ∗(Qt) ⊂ Rt′ . Then, if t, t′ ≥ 0, notice that, for p and q ranging over Pr(M⊗̄B(`2)),
we have

ω̃ϕ(t′) ≥ t ⇐⇒ [dV(p, q) ≥ t′ ⇒ dU((ϕ⊗ 1)(p), (ϕ⊗ 1)(q)) ≥ t]

⇐⇒

[
((ϕ⊗ 1)(p), (ϕ⊗ 1)(q)) ∈

⋃
s<t

Qs ⇒ (p, q) ∈
⋃
s<t′

Rt

]

⇐⇒

[
(p, q) ∈

⋃
s<t

ϕ∗(Qs)⇒ (p, q) ∈
⋃
s<t′

Rs

]
⇐⇒

⋃
s<t

ϕ∗(Qs) ⊂
⋃
s<t′

Rs.

As ω̃ϕ is increasing, we are done. �

Remark 6.26. We point out that ω̃ϕ was introduced in [CS23, Definition 3.2] with the small
difference that there the projections p and q are only allowed to range over projections in
M. However, those two definitions coincide for operator reflexive quantum metric spaces.
Indeed, this can be seen for instance from the proof of Proposition 6.25 and the fact that if
V ,V ′ ∈ QRel(M⊂ B(H)) are such that (p⊗ 1, q ⊗ 1) ∈ RV implies (p⊗ 1, q ⊗ 1) ∈ RV ′ for
all p, q ∈ Pr(M), then RV ⊂ RV ′ .

We now turn to quantum expanding functions. As introduced in [CS23, Definition 2.3],
given p ∈ Pr(M), we define the diameter of p as

diamV(p) = sup{dV(r, s) : ∃a ∈ B(H) so that r(pap⊗ 1)s 6= 0}.

Although we do not have an equivalent definition for quantum expanding maps in terms of
a modulus, we can relate them with the following modulus introduced in [CS23, Definition
3.2].
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Proposition 6.27. Let (M,V) and (N ,U) be quantum metric spaces and consider M
and N as quantum coarse spaces endowed with V = VV and U = VU, respectively. If
ϕ :M→N is quantum expanding, then ρ̃ϕ(t) <∞ for all t ≥ 0, where

ρ̃ϕ(t) = sup{diamU(ϕ(p)) : p ∈ Pr(M) and diamV(p) ≤ t}.

Proof. Let V = (Vt)t≥0 and U = (Ut)t≥0. For each t ≥ 0, let Rt = RVt and Qt = RUt . Fix
t > 0. Let

Qt =
⋃

Q∈(ϕ∗)−1[{Rt}]

Q,

so, as a union of intrinsic quantum relations is an intrinsic quantum relation, Qt ∈ IQRel(N ).
Moreover, ϕ∗(Qt) = Rt, so, as ϕ is quantum expanding, Qt ∈ Q. Pick t′ > 0 so that
Qt ⊂ Qt′ .

Let us show that ρ̃ϕ(t) ≤ t′. For each p ∈ Pr(M), let

R(p) =
⋃

a∈B(H)

{(r, s) ∈ Pr(M⊗̄B(`2)) : r(pap⊗ 1)s 6= 0}

and

Q(p) =
⋃

a∈B(H)

{(r, s) ∈ Pr(N⊗̄B(`2)) : r(ϕ(p)aϕ(p)⊗ 1)s 6= 0}.

So R(p) and Q(p) are intrinsic quantum relations on M and N , respectively, and we have
that

ρ̃ϕ(t) ≤ t′ ⇐⇒ diamV(p) ≤ t ⇒ diamU(ϕ(p)) ≤ t′

⇐⇒ R(p) ⊂ Rt ⇒ Q(p) ⊂ Qt′ ,

where the projections p above range over Pr(M).
Say R(p) ⊂ Rt. By [CS23, Lemma 2.6], ϕ∗(Q(p)) ⊂ R(p); so ϕ∗(Q(p)) ⊂ Rt. Therefore,

ϕ∗(Q(p) ∪ Qt) = Rt which, by the definition of Qt, implies that Q(p) ⊂ Qt. By our choice
of t′, Q(p) ⊂ Qt′ . �

We do not know if the condition in Proposition 6.27 characterizes quantum expansion.

Remark 6.28. We notice that quantum coarse embeddings between quantum metric spaces
were introduced differently in [CS23]: according to [CS23, Definition 3.4], a quantum function
ϕ :M→N is a quantum coarse embedding if limt→∞ ω̃ϕ(t) =∞ and ρ̃ϕ(t) <∞.

6.4. Quantum asymptotic dimension. Asymptotic dimension was introduced by M. Gro-
mov in [Gro93, Section 1.E], and it has since become one of the main concepts in coarse
geometry. In this section, we quantize this notion and show that, just as in the classical
setting, quantum asymptotic dimension is preserved under quantum coarse embeddings. In
the case of quantum metric spaces, the development below coincides with [CS23, Theorem
4.6].

Definition 6.29. Let (M,R) be an intrinsic quantum coarse space.

1. Given P ⊂ Pr(M), we say that P covers M if 1HM =
∨
p∈P p.

2. Given R ∈ R and P ⊂ Pr(M), we say that P is R-disjoint if (p ⊗ 1, q ⊗ 1) 6∈ R for
all p, q ∈ P with p 6= q.
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3. Given R ∈ R and p ∈ Pr(M), we say that the diameter of p is at most R, and we
write diam(p) ≤ R, if (r, s) ∈ R for all r, s ∈ Pr(M) such that there is a ∈ B(HM)
with r(pap⊗ 1)s 6= 0.9

4. We say P ⊂ Pr(M) is uniformly bounded if there is R ∈ R so that diam(p) ≤ R for
all p ∈ P .

If (M,V ) is a quantum coarse space, all the definitions above are made with respect to RV .

Definition 6.30. Let (M,V ) be a quantum coarse space and n ∈ N ∪ {0}. We say that
(M,V ) has asymptotic dimension at most n if for all R ∈ RV there are P0,P1, . . . ,Pn ⊂
Pr(M) so that

1. (Pi)ni=0 covers M,
2. each Pi is R-separated, and
3. each Pi is uniformly bounded.

We say that (M,V ) has asymptotic dimension at most n, and write asydim(M,V ) = n, if
n is the smallest element in N ∪ {0} satisfying the above. If no such n exists, we say that
(M,V ) has infinite asymptotic dimension.

It is clear that the definition above coincides with the usual definition of asymptotic
dimension of a coarse space (X, E) for M = `∞(X) and V = VE .

Theorem 6.31. Let (M,V ) and (N ,U ) be a quantum coarse spaces. If there is a quantum
coarse and quantum expanding map ϕ :M→N , then asydim(N ,U ) ≤ asydim(M,V ). In
particular, if and (M,V ) and (N ,U ) are quantum coarsely equivalent, then asydim(N ,U ) =
asydim(M,V ).

Proof. Let ϕ :M→N be a quantum coarse and quantum expanding map. First notice that
if Q ∈ RU and P ⊂ Pr(M) is ϕ∗(Q)-disjoint, then ϕ[P ] is Q-disjoint. Now let R ∈ R and
let Q be the union of all Q′ ∈ IQRel(N ) so that ϕ∗(Q′) ⊂ R. As ϕ is quantum expanding,
we have that Q ∈ RU . Proceeding analogously as in the proof of Proposition 6.27, we have
that if diam(p) ≤ R, then diam(ϕ(p)) ≤ Q.

By the above, if Q ∈ RU and P0,P1, . . . ,Pn ⊂ Pr(M) forms a ϕ∗(Q)-disjoint, uniformly
bounded cover of M, then (ϕ[Pi])ni=0 is a Q-disjoint, uniformly bounded cover of N . �
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